

Table of Contents
Introduction...1

What is Sugar?..3
The Journal...3
Collaboration...4
Security..4
Summary..5

What is a Sugar Activity?...6

What Do I Need To Know To Write A Sugar Activity? ...7
Python..7
PyGTK...8
PyGame..8

Setting Up a Sugar Development Environment...9
Install Linux Or Use A Virtual Machine?..9
What About Using sugar-jhbuild?...10
Python..10
Eric...10
SPE (Stani's Python Editor)...11
Other IDE's..12
Inkscape...12
Git..12
The GIMP..14
Sugar Emulation..14

Creating your First Sugar Activity...16
Make A Standalone Python Program First..16
Inherit From The sugar.activity.Activity Class..16
Package The Activity...16
Add Refinements...16
 Put The Project Code In Version Control...16
 Going International With Pootle...17
Distributing The Activity...17
 Add Collaboration...17
Add Text To Speech..17

 A Standalone Python Program For Reading Etexts...18
The Program...18
 Running The Program...21
How The Program Works..22

Inherit From sugar.activity.Activity...24
Object Oriented Python..24
Extending The Activity Class..25

Package The Activity..30
Add setup.py..30
Create activity.info...31
Create An Icon...31
Make a MANIFEST File...33
Install The Activity..33
Running Our Activity..33

i

Table of Contents
Add Refinements...36

Toolbars...36
Metadata And Journal Entries..44

Add Your Activity Code To Version Control...47
What Is Version Control?..47
Git Along Little Dogies...47
Setting Up SSH Keys...53
Create A New Project..55
Everyday Use Of Git..58

Going International With Pootle...61
Introduction..61
Getting Text With gettext..61
Going To Pot..61
Going To Pootle...63
Pay No Attention To That Man Behind The Curtain...64
C'est Magnifique!...64

Distribute Your Activity...66
Choose A License..66
Add License Comments To Your Python Code..67
Create An .xo File..67
Add Your Activity To ASLO..68

Debugging Sugar Activities..69
Introduction..69
Make A Standalone Version Of Your Program First...69
Use PyLint, PyChecker, or PyFlakes...69

PyFlakes..69
PyChecker...70
PyLint..70

The Log Activity..72
Logging..73
The Analyze Activity...74

Making Shared Activities...76
Introduction..76
Running Sugar As More Than One User...76

Fedora 10 (Sugar .82)..76
Fedora 11 (Sugar .84)..76
sugar-jhbuild..77

Connecting To Other Users...77
Salut...77
Jabber Server...77

The MiniChat Activity...79
Know who Your Buddies Are..88
It's A Series Of Tubes!...90
Read Etexts III, Now with Book Sharing!...90
Using D-Bus Tubes..105
How D-Bus Tubes Work, More Or Less...107
Introducing Hello Mesh And Friends..109

ii

Table of Contents
Adding Text To Speech..118

Introduction..118...118
We Have Ways To Make You Talk...118
 Running espeak Directly...119
Using The gstreamer espeak Plugin...121

Fun With The Journal..133
Introduction..133
Introducing Sugar Commander..133
 Adding A Journal Entry..144...145
NOT Adding A Journal Entry..145
Listing Out Journal Entries..146
 Using Journal Entries..149
Updating A Journal Object..150
Deleting A Journal Entry...151
Getting Callbacks From The Journal Using D-Bus...151

Making Activities Using PyGame..154
Introduction..154
Making A Standalone Game Using PyGame...154
Introducing SugarGame...157
Making A Sugar Activity Out Of A PyGame Program...158

Making New Style Toolbars...165
Introduction..165
 Adding New Style Toolbars to Read Etexts II..165

Where To Go From Here?...184
PyGTK Book by Peter Gill..184
OLPC Austria Activity Handbook...184
The Sugar Almanac..184
 Sugar Labs Mailing Lists..184
PyDoc...184

About The Authors...186
James Simmons..186
James Cameron..186
Oceana Rain Fields..186

License..188

Acknowledgements...189

Authors...190

General Public License...193

iii

Introduction
"This book is a record of a pleasure trip. If it were a record of a solemn scientific expedition, it would have
about it that gravity, that profundity, and that impressive incomprehensibility which are so proper to works of
that kind, and withal so attractive."

From the Preface to The Innocents Abroad, by Mark Twain

The purpose of this book is to teach you what you need to know to write Activities for Sugar, the operating
environment developed for the One Laptop Per Child project. This book does not assume that you know how
to program a computer, although those who do will find useful information in it. My primary goal in writing
it is to encourage non programmers, including children and their teachers, to create their own Sugar
Activities. Because of this goal I will include some details that other books would leave out and leave out
things that others would include. Impressive incomprehensibility will be kept to a minimum.

If you just want to learn how to write computer programs Sugar provides many Activities to help you do that:
Etoys, Turtle Art, Scratch, and Pippy. None of these are really suitable for creating Activities so I won't cover
them in this book, but they're a great way to learn about programming. If you decide after playing with these
that you'd like to try writing an Activity after all you'll have a good foundation of knowledge to build on.

When you have done some programming then you'll know how satisfying it can be to use a program that you
made yourself, one that does exactly what you want it to do. Creating a Sugar Activity takes that enjoyment
to the next level. A useful Sugar Activity can be translated by volunteers into every language, be downloaded
hundreds of times a week and used every day by students all over the world.

A book that teaches everything you need to know to write Activities would be really, really long and would
duplicate material that is already available elsewhere. Because of this, I am going to write this as sort of a
guided tour of Activity development. That means, for example, that I'll teach you what Python is and why it's
important to learn it but I won't teach you the Python language itself. There are excellent tutorials on the
Internet that will do that, and I'll refer you to those tutorials.

There is much sample code in this book, but there is no need for you to type it in to try it out. All of the code
is in a Git repository that you can download to your own computer. If you've never used Git there is a chapter

Introduction 1

that explains what it is and how to use it.

I started writing Activities shortly after I received my XO laptop. When I started I didn't know any of the
material that will be in this book. I had a hard time knowing where to begin. What I did have going for me
though was a little less than 30 years as a professional programmer. As a result of that I think like a
programmer. A good programmer can take a complex task and divide it up into manageable pieces. He can
figure out how things must work, and from that figure out how they do work. He knows how to ask for help
and where. If there is no obvious place to begin he can begin somewhere and eventually get where he needs to
go.

Because I went through this process I think I can be a pretty good guide to writing Sugar Activities. Along
the way I hope to also teach you how to think like a programmer does.

From time to time I may add chapters to this book. Sugar is a great application platform and this book can
only begin to tell you what is possible. It is my hope that future versions of the book will have guest chapters
on more advanced topics written by other experienced Activity developers.

Introduction 2

What is Sugar?
Sugar is the user interface designed for the XO laptop. It can now be installed on most PCs, including older
models that can't run the latest Windows software. You can also install it on a thumb drive (Sugar on a Stick)
and boot your PC from that.

When the XO laptop first came out some people questioned the need for a new user interface. Wouldn't it be
better for children to learn something more like what they would use as adults? Why not give them Microsoft
Windows instead?

This would be a reasonable question if the goal was to train children to use computers and nothing else. It
would be even more reasonable if we could be sure that the software they would use as adults looked and
worked like the Microsoft Windows of today. These are of course not reasonable assumptions.

The OLPC project is not just about teaching computer literacy. It is about teaching everything: reading,
writing, arithmetic, history, science, arts and crafts, computer programming, music composition, and
everything else. Not only do we expect the child to use the computer for her school work, we expect her to
take it home and use it for her own explorations into subjects that interest her.

This is a great deal more than anyone has done with computers for education, so it is reasonable to rethink
how children should work with computers. Sugar is the result of that rethinking.

Sugar has the following unique features:

The Journal

The Journal is where all the student's work goes. Instead of files and folders there is a list of Journal entries.
The list is sorted in descending order by the date and time it was last worked on. In a way it's like the "Most
Recently Used" document menu in Windows, except instead of containing just the last few items it contains
everything and is the normal way to save and resume work on something.

The Journal makes it easy to organize your work. Any work you do is saved to the Journal. Anything you
download from the web goes in the Journal. If you've ever downloaded a file using a web browser, then had
to look for it afterwards because it went in some directory other than the one you expected, or if you ever had
to help your parents when they were in a similar situation, you can understand the value of the Journal.

The Journal has metadata for each item in it. Metadata is information about information. Every Journal entry
has a title, a description, a list of keywords, and a screen shot of what it looked like the last time it was used. It
has an activity id that links it to the Activity that created it, and it may have a MIME type as well (which is a
way of identifying Journal entries so that items not created by an Activity may still be used by an Activity that
supports that MIME type).

In addition to these common metadata items a Journal entry may be given custom metadata by an Activity.
For instance, the Read Activity uses custom metadata to save the page number you were reading when you
quit the Activity. When you resume reading later the Activity will put you on that page again.

In addition to work created by Activities, the Journal can contain Activities themselves. To install an Activity
you can use the Browse Activity to visit the website http://activities.sugarlabs.org and download it. It will
automatically be saved to the Journal and be ready for use. If you don't want the Activity any more, simply
delete it from the Journal and it's completely gone. No uninstall programs, no dialog boxes telling you that
such and such a .DLL doesn't seem to be needed anymore and do you want to delete it? No odd bits and
pieces left behind.

What is Sugar? 3

http://activities.sugarlabs.org/

Collaboration

The second unique feature Sugar is Collaboration. Collaboration means that Activities can be used by more
than one person at the same time. While not every Activity needs collaboration and not every Activity that
could use it supports it, a really first rate Activity will provide some way to interact with other Sugar users on
the network. For instance, all the e-book reading Activities provide a way of giving a copy of the book you're
reading (with any notes you added to it) to a friend or to the whole class. The Write Activity lets several
students work on the same document together. The Distance Activity lets two students see how far apart from
each other they are.

There are five views of the system you can switch to at the push of a button (Function Keys F1-4). They are:

The Neighborhood View•
The Friends View•
The Activity Ring•
The Journal•

Of these Views, the first two are used for Collaboration.

The Neighborhood View shows icons for everyone on the network. Every icon looks like a stick figure made
by putting an "O" above an "X". Each icon has a name, chosen by the student when she sets up her computer.
Every icon is displayed in two colors, also chosen by the student. In addition to these "XO" icons there will be
icons representing mesh networks and others representing WiFi hot spots. Finally there will be icons
representing active Activities that their owners wish to share.

To understand how this works consider the Chat Activity. The usual way applications do chat is to have all
the participants start up a chat client and visit a particular chat room at the same time. With Sugar it's
different. One student starts the Chat Activity on her own computer and goes to the Neighborhood View to
invite others on the network to participate. They will see a Chat icon in their own Neighborhood View and
they can accept. The act of accepting starts up their own Chat Activity and connects them to the other
participants.

The Friends View is similar to the Neighborhood View, but only contains icons for people you have
designated as Friends. Collaboration can be offered at three levels: with individual persons, with the whole
Neighborhood, and with Friends. Note that the student alone decides who her Friends are. There is no need to
ask to be someone's Friend. It's more like creating a mailing list in email.

Security

Protecting computers from malicious users is very important, and if the computers belong to students it is
doubly important. It is also more difficult, because we can't expect young students to remember passwords
and keep them secret. Since Sugar runs on top of Linux viruses aren't much of a problem, but malicious
Activities definitely are. If an Activity was allowed unrestricted access to the Journal, for instance, it could
wipe it out completely. Somebody could write an Activity that seems to be harmless and amusing, but perhaps
after some random number of uses it could wipe out a student's work.

The most common way to prevent a program from doing malicious things is to make it run in a sandbox. A
sandbox is a way to limit what a program is allowed to do. With the usual kind of sandbox you either have an
untrusted program that can't do much of anything or a trusted program that is not restricted at all. An
application becomes trusted when a third party vouches for it by giving it a signature. The signature is a
mathematical operation done on the program that only remains valid if the program is not modified.

Sugar has a more sophisticated sandbox for Activities than that. No Activity needs to be trusted or is trusted.

Collaboration 4

Every Activity can only work with the Journal in a limited, indirect way. Each Activity has directories
specific to it that it can write to, and all other directories and files are limited to read-only access. In this way
no Activity can interfere with the workings of any other Activity. In spite of this, an Activity can be made to
do what it needs to do.

Summary

Sugar is an operating environment designed to support the education of children. It organizes a child's work
without needing files and folders. It supports collaboration between students. Finally, it provides a robust
security model that prevents malicious programs from harming a student's work.

It would not be surprising to see these features someday adopted by other desktop environments.

Security 5

What is a Sugar Activity?
A Sugar Activity is a self-contained Sugar application packaged in a .xo bundle.

An .xo bundle is an archive file in the Zip format. It contains:

A MANIFEST file listing everything in the bundle•
An activity.info file that has attributes describing the Activity as name=value pairs. These attributes
include the Activity name, its version number, an identifier, and other things we will discuss when we
write your first Activity.

•

An icon file (in SVG format)•
Files containing translations of the text strings the Activity uses into many languages•
The program code to run the Activity•

A Sugar Activity will generally have some Python code that extends a Python class called Activity. It may
also make use of code written in other languages if that code is written in a way that allows it to be used from
Python (this is called having Python bindings). It is even possible to write a Sugar Activity without using
Python at all, but this is beyond the scope of this book.

There are only a few things that an Activity can depend on being included with every version of Sugar. These
include modules like Evince (PDF and other document viewing), Gecko (rendering web pages), and Python
libraries like PyGTK and PyGame. Everything needed to run the Activity that is not supplied by Sugar must
go in the bundle file. A question sometimes heard on the mailing lists is "How do I make Sugar install X the
first time my Activity is run?" The answer: you don't. If you need X it needs to go in the bundle.

You can install an Activity by copying or downloading it to the Journal. You uninstall it by removing it from
the Journal. There is no Install Shield to deal with, no deciding where you want the files installed, no
possibility that installing a new Activity will make an already installed Activity stop working.

An Activity generally creates and reads objects in the Journal. A first rate Activity will provide some way for
the Activity to be shared by multiple users.

What is a Sugar Activity? 6

What Do I Need To Know To Write A Sugar
Activity?
If you are going to write Sugar Activities you should learn something about the topics described in this
chapter. There is no need to become an expert in any of them, but you should bookmark their websites and
skim through their tutorials. This will help you to understand the code samples we'll be looking at.

Python

Python is the most used language for writing Activities. While you can use other languages, most Activities
have at least some Python in them. Sugar provides a Python API that simplifies creating Activities. While it
is possible to write Activities using no Python at all (like Etoys), it is unusual.

All of the examples in this book are written entirely in Python.

There are compiled languages and interpreted languages. In a compiled language the code you write is
translated into the language of the chip it will run on and it is this translation that is actually run by the OS. In
an interpreted language there is a program called an interpreter that reads the code you write and does what
the code tells it to do. (This is over simplified, but close enough to the truth for this chapter).

Python is an interpreted language. There are advantages to having a language that is compiled and there are
advantages to having an interpreted language. The advantages Python has for developing Activities are:

It is portable. In other words, you can make your program run on any chip and any OS without
making a version specific to each one. Compiled programs only run on the OS and chip they are
compiled for.

•

Since the source code is the thing being run, you can't give someone a Python program without giving
them the source code. You can learn a lot about Activity programming by studying other people's
code, and there is plenty of it to study.

•

It is an easy language for new programmers to learn, but has language features that experienced
programmers need.

•

It is widely used. One of the best known Python users is Google. They use it enough that they have
started a project named â��Unladen Swallowâ�� to make Python programs run faster.

•

The big advantage of a compiled language is that it can run much faster than an interpreted language.
However, in actual practice a Python program can perform as well as a compiled program. To understand why
this is you need to understand how a Python program is made.

Python is known as a â��glueâ�� language. The idea is that you have components written in various
languages (usually C and C++) and they have Python bindings. Python is used to â��glueâ�� these
components together to create applications. In most applications the bulk of the application's function is done
by these compiled components, and the application spends relatively little time running the Python code that
glues the components together.

In addition to Activities using Python most of the Sugar environment itself is written in Python.

If you have programmed in other languages before there is a good tutorial for learning Python at the Python
website: http://docs.python.org/tutorial/. If you're just starting out in programming you might check out
Invent Your Own Computer Games With Python, which you can read for free at http://inventwithpython.com/.

What Do I Need To Know To Write A Sugar Activity? 7

http://docs.python.org/tutorial/
http://inventwithpython.com/

PyGTK

GTK+ is a set of components for creating user interfaces. These components include things like buttons, scroll
bars, list boxes, and so on. It is used by GNOME desktop environment and the applications that run under it.
Sugar Activities use a special GNOME theme that give GTK+ controls a unique look.

PyGTK is a set of Python bindings that let you use GTK+ components in Python programs. There is a tutorial
showing how to use it at the PyGTK website: http://www.pygtk.org/tutorial.html.

PyGame

The alternative to using PyGTK for your Activity is PyGame. PyGame can create images called sprites and
move them around on the screen. As you might expect, PyGame is mostly used for writing games. It is less
commonly used in Activities than PyGTK.

The tutorial to learn about PyGame is at the PyGame website: http://www.pygame.org/wiki/tutorials. The
website also has a bunch of pygame projects you can download and try out.

PyGTK 8

http://www.pygtk.org/tutorial.html
http://www.pygame.org/wiki/tutorials

Setting Up a Sugar Development Environment
It is not currently practical to develop Activities for the XO on the XO. It's not so much that you can't do it,
but that it's easier and more productive to do your development and testing on another machine running a
more conventional OS. This gives you access to better tools and it also enables you to simulate collaboration
between two computers running Sugar using only one computer.

Install Linux Or Use A Virtual Machine?

Even though Sugar runs on Linux it is possible to run a complete instance of Sugar in a virtual machine that
runs on Windows. A virtual machine is a way to run one operating system on top of another one. The
operating system being run is fooled into thinking it has the whole computer to itself. (Computer industry
pundits will tell you that using virtual machines is the newest new thing out there. Old timers like me know
that IBM was doing it on their mainframe computers back in the 1970's).

For awhile this was actually the recommended way to develop Activities. The version of Linux that Sugar
used was different enough from regular Linux distributions that even Linux users were running Sugar in a
virtual machine on top of Linux.

The situation has improved, and most current Linux distributions have a usable Sugar environment.

If you're used to Windows you might think that running Sugar in a VM from Windows instead of installing
Linux might be the easier option. In practice it is not. Linux running in a VM is still Linux, so you're still
going to have to learn some things about Linux to do Activity development. Also, running a second OS in a
VM requires a really powerful machine with gigabytes of memory. On the other hand, I do my Sugar
development using Linux on an IBM NetVista Pentium IV I bought used for a little over a hundred dollars,
shipping included. It is more than adequate.

Installing Linux is not the test of manhood it once was. Anyone can do it. The GNOME desktop provided
with Linux is very much like Windows so you'll feel right at home using it.

When you install Linux you have the option to do a dual boot, running Linux and Windows on the same
computer (but not at the same time). This means you set aside a disk partition for use by Linux and when you
start the computer a menu appears asking which OS you want to start up. The Linux install will even create
the partition for you, and a couple of gigabytes is more than enough disk space. Sharing a computer with a
Linux installation will not affect your Windows installation at all.

Sugar Labs has been working to get Sugar included with all Linux distributions. If you already have a favorite
distribution, chances are the latest version of it includes Sugar. Fedora, openSuse, Debian, and Ubuntu all
include Sugar. If you already use Linux, see if Sugar is included in your distribution. If not, Fedora is what is
used by the XO computer so Fedora 10 or later might be your best bet. You can download the Fedora install
CD or DVD here: https://fedoraproject.org/get-fedora.

It is worth pointing out that all of the other tools I'm recommending are included in every Linux distribution,
and they can be installed with no more effort than checking a check box. The same tools often will run on
Windows, but installing them there is more work than you would expect for Windows programs.

If you are unwilling to install and learn about Linux but still want to develop Activities one option you have is
to develop a standalone Python program that uses PyGame of PyGTK and make it do what you'd like your
Activity to do. You could then turn over your program to someone else who could convert it into a Sugar
Activity. You could develop such a Python program on Windows or on the Macintosh.

Setting Up a Sugar Development Environment 9

https://fedoraproject.org/get-fedora

If you want to do development on a Macintosh running Sugar in a virtual machine may be a more attractive
option. If you want to try it details will be found here: http://wiki.laptop.org/go/Developers/Setup. It may also
be possible to install Fedora Linux on an Intel or Power PC Macintosh as a dual boot, just like you can do
with Windows. Check the Fedora website for details.

Another option for Mac users is to use Sugar on a Stick as a test environment. You can learn about that here:
http://wiki.sugarlabs.org/go/Sugar_on_a_Stick.

What About Using sugar-jhbuild?

Sugar-jhbuild is a script that downloads the source code for the latest version of all the Sugar modules and
compiles it into a subdirectory of your home directory. It doesn't actually install Sugar on your system.
Instead, you run it out of the directory you installed it in. Because of the way it is built and run it doesn't
interfere with the modules that make up your normal desktop. If you are developing Sugar itself, or if you are
developing Activities that depend on the very latest Sugar features you'll need to run sugar-jhbuild.

Running this script is a bit more difficult than just installing the Sugar packages that come with the
distribution. You'll need to install Git and Subversion, run a Git command from the terminal to download the
sugar-jhbuild script, then run the script with several different options which download more code, ask you to
install more packages, and ultimately compile everything. It may take you a couple of hours to do all the
steps. When you're done you'll have an up to date test environment that you can run as an alternative to
sugar-emulator. There is no need to uninstall sugar-emulator; both can coexist.

You run it with these commands:

cd sugar-jhbuild
./sugar-jhbuild run sugar-emulator

Should you consider using it? The short answer is no. A longer answer is probably not yet.

If you want your Activities to reach the widest possible audience you don't want the latest Sugar. In fact, if
you want a test environment that mimics what is on most XO computers right now you need to use Fedora 10.
Because updating operating systems in the field can be a major undertaking for a school most XO's will be
running Sugar .82 or older for quite some time.

Of course it is also important to have developers that want to push the boundaries of what Sugar can do. If
after developing some Activities you decide you need to be one of them you can learn about running
sugar-jhbuild here: http://wiki.sugarlabs.org/go/DevelopmentTeam/Jhbuild.

Strictly speaking sugar-jhbuild is just the script that downloads and compiles Sugar. If you wanted to be
correct you would say "Run the copy of sugar-emulator you made with sugar-jhbuild". Most Sugar
developers would just say "Run sugar-jhbuild" and that's what I'll say in this book.

Python

We'll be doing all the code samples in Python so you'll need to have Python installed. Python comes with
every Linux distribution. You can download installers for Windows and the Macintosh at
http://www.python.org/.

Eric

Developers today expect their languages to be supported by an Integrated Development Environment and
Python is no exception. An IDE helps to organize your work and provides text editing and a built in set of

Install Linux Or Use A Virtual Machine? 10

http://wiki.laptop.org/go/Developers/Setup
http://wiki.sugarlabs.org/go/Sugar_on_a_Stick
http://wiki.sugarlabs.org/go/DevelopmentTeam/Jhbuild
http://www.python.org

programming and debugging tools.

There are two Python IDE's I have tried: Eric and Idle. Eric is the fancier of the two and I recommend it.
Every Linux distribution should include it. It looks like it might work on Windows too. You can learn more
about it at the Eric website: http://eric-ide.python-projects.org/.

SPE (Stani's Python Editor)

This is an IDE I discovered while writing this book. It comes with Fedora and in addition to being a Python
editor it will make UML diagrams of your code and show PyDoc for it. Here is SPE showing a UML
diagram for one of the Activities in this book:

If you're an experienced developer you might find this a useful alternative to Eric. If you're just starting out
Eric should meet your needs pretty well.

Eric 11

http://eric-ide.python-projects.org/

Other IDE's

There is also a commercial Python IDE called Wingware, which has a version you can use for free. You can
learn more about it at http://www.wingware.com/.

Inkscape

Inkscape is a tool for creating images in SVG format. Sugar uses SVG for Activity icons and other kinds of
artwork. The â��XOâ�� icon that represents each child in the Neighborhood view is an SVG file that can be
modified.

Inkscape comes with every Linux distribution, and can be installed on Windows as well. You can learn more
about it here: http://www.inkscape.org/.

Git

Git is a version control system. It stores versions of your program code in a way that makes them easy to get
back. Whenever you make changes to your code you ask Git to store your code in its repository. If you need
to look at an old version of that code later you can. Even better, if some problem shows up in your code you
can compare your latest code to an old, working version and see exactly what lines you changed.

Other IDE's 12

http://www.wingware.com
http://www.inkscape.org/

 â��

If there are two people working on the same program independently a version control system will merge their
changes together automatically.

Suppose you're working on a major new version of your Activity when someone finds a really embarrassing
bug in the version you just released. If you use Git you don't need to tell people to live with it until the next
release, which could be months away. Instead you can create a branch of the previous version and work on it
alongside the version you're enhancing. In effect Git treats the old version you're fixing and the version you're
improving as two separate projects.

You can learn more about Git at the Git website: http://git-scm.com/.

When you're ready for a Git repository for your project you can set one up here: http://git.sugarlabs.org/. I
will have more to say about setting up and using a Git repository later in this book.

There is a Git repository containing all the code examples from this book. Once you have Git installed you
can copy the repository to your computer with this command:

git clone git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git

This command should be typed all on one line. The backslash (\) character at the end of the first line is used
in Linux to continue a long command to a second line. It is used here to make the command fit on the page of
the printed version of this book. When you type in the command you can leave it out and type
myo-sugar-activities-examples/mainline.git immediately following git.sugarlabs.org/.

This convention of splitting long commands over multiple lines will be used throughout this book. In
addition to that, the code in Git will generally have longer lines than you'll see in the code listings in the
book. For that reason I'd recommend that you not try to type in the code from these listings, but use the code
in Git instead.

Git 13

http://git-scm.com/
http://git.sugarlabs.org/

The GIMP

The GIMP is one of the most useful and badly named programs ever developed. You can think of it as a free
version of Adobe Photoshop. If you need to work with image files (other than SVG's) you need this program.

You may never need this program to develop the Activity itself, but when it's time to distribute the Activity
you'll use it to create screen shots of your Activity in action. Nothing sells an Activity to a potential user like
good screen shots.

Sugar Emulation

Most Linux distributions should have Sugar included. In Fedora you can run Sugar as an alternative desktop
environment. When you log in to GDM Sugar appears as a desktop selection alongside GNOME, KDE,
Window Maker, and any other window managers you have installed.

This is not the normal way to use Sugar for testing. The normal way uses a tool called Xephyr to run a Sugar
environment in a window on your desktop. In effect, Xephyr runs an X session inside a window and Sugar
runs in that. You can easily take screen shots of Sugar in action, stop and restart Sugar sessions without
restarting the computer, and run multiple copies of Sugar to test collaboration.

The GIMP 14

I'll have more to say about this when it's time to test your first Activity.

Sugar Emulation 15

Creating your First Sugar Activity

Make A Standalone Python Program First

The best advice I could give a beginning Activity developer is to make a version of your Activity that can run
on its own, outside of the Sugar environment. Testing and debugging a Python program that stands alone is
faster, easier and less tedious than doing the same thing with a similar Activity. You'll understand why when
you start testing your first Activity.

The more bugs you find before you turn your code into an Activity the better. In fact, it's a good idea to keep a
standalone version of your program around even after you have the Activity version well underway. I used my
standalone version of Read Etexts to develop the text to speech with highlighting feature. This saved me a lot
of time, which was especially important because I was figuring things out as I went.

Our first project will be a version of the Read Etexts Activity I wrote.

Inherit From The sugar.activity.Activity Class

Next we're going to take our standalone Python program and make an Activity out of it. To do this we need to
understand the concept of inheritance. In everyday speech inheritance means getting something from your
parents that you didn't work for. A king will take his son to a castle window and say, "Someday, lad, this will
all be yours!" That's inheritance.

In the world of computers programs can have parents and inherit things from them. Instead of inheriting
property, they inherit code. There is a piece of Python code called sugar.activity.Activity that's the best parent
an Activity could hope to have, and we're going to convince it to adopt our program. This doesn't mean that
our program will never have to work again, but it won't have to work as much.

Package The Activity

Now we have to package up our code to make it something that can be run under Sugar and distributed as an
.xo file. This involves setting up a MANIFEST, activity.info, setup.py, and creating a suitable icon with
Inkscape.

Add Refinements

Every Activity will have the basic Activity toolbar. For most Activities this will not be enough, so we'll need
to create some custom toolbars as well. Then we need to hook them up to the rest of the Activity code so that
what happens to the toolbar triggers actions in the Activity and what happens outside the toolbar is reflected in
the state of the toolbar.

In addition to toolbars we'll look at some other ways to spiff up your Activity.

Put The Project Code In Version Control

By this time we'll have enough code written that it's worth protecting and sharing with the world. To do that
we need to create a Git repository and add our code to it. We'll also go over the basics of using Git.

Creating your First Sugar Activity 16

Going International With Pootle

Now that our code is in Git we can request help from our first collaborator: the Pootle translation system.
With a little setup work we can get volunteers to make translated versions of our Activity available.

Distributing The Activity

In this task we'll take our Activity and set it up on http://activities.sugarlabs.org plus we'll package up the
source code so it can be included in Linux distributions.

Add Collaboration

Next we'll add code to share e-books with Friends and the Neighborhood.

Add Text To Speech

Text to Speech with word highlighting is next. Our simple project will become a Kindle-killer!

 Going International With Pootle 17

http://activities.sugarlabs.org

A Standalone Python Program For Reading Etexts

The Program

Our example program is based on the first Activity I wrote, Read Etexts. This is a program for reading free
e-books.

The oldest and best source of free e-books is a website called Project Gutenberg
(http://www.gutenberg.org/wiki/Main_Page). They create books in plain text format, in other words the kind
of file you could make if you typed a book into Notepad and hit the Enter key at the end of each line. They
have thousands of books that are out of copyright, including some of the best ever written. Before you read
further go to that website and pick out a book that interests you. Check out the "Top 100" list to see the most
popular books and authors.

The program we're going to create will read books in plain text format only.

There is a Git repository containing all the code examples in this book. Once you have Git installed you can
copy the repository to your computer with this command:

git clone git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git

The code for our standalone Python program will be found in the directory Make_Standalone_Python in a
file named ReadEtexts.py. It looks like this:

#! /usr/bin/env python
import sys
import os
import zipfile
import pygtk
import gtk
import getopt
import pango

page=0
PAGE_SIZE = 45

class ReadEtexts():

 def keypress_cb(self, widget, event):
 "Respond when the user presses one of the arrow keys"
 keyname = gtk.gdk.keyval_name(event.keyval)
 if keyname == 'plus':
 self.font_increase()
 return True
 if keyname == 'minus':
 self.font_decrease()
 return True
 if keyname == 'Page_Up' :
 self.page_previous()
 return True
 if keyname == 'Page_Down':
 self.page_next()
 return True
 if keyname == 'Up' or keyname == 'KP_Up' \
 or keyname == 'KP_Left':
 self.scroll_up()
 return True
 if keyname == 'Down' or keyname == 'KP_Down' \
 or keyname == 'KP_Right':

 A Standalone Python Program For Reading Etexts 18

http://www.gutenberg.org/wiki/Main_Page).
http://www.gutenberg.org/wiki/Main_Page
http://www.gutenberg.org/wiki/Main_Page).

 self.scroll_down()
 return True
 return False

 def page_previous(self):
 global page
 page=page-1
 if page < 0: page=0
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.upper - \
 v_adjustment.page_size

 def page_next(self):
 global page
 page=page+1
 if page >â��= len(self.page_index): page=0
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.lower

 def font_decrease(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size - 1
 if font_size < 1:
 font_size = 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def font_increase(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size + 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def scroll_down(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.upper - \
 v_adjustment.page_size:
 self.page_next()
 return
 if v_adjustment.value < v_adjustment.upper -\
 v_adjustment.page_size:
 new_value = v_adjustment.value + \
 v_adjustment.step_increment
 if new_value > v_adjustment.upper -\
 v_adjustment.page_size:
 new_value = v_adjustment.upper -\
 v_adjustment.page_size
 v_adjustment.value = new_value

 def scroll_up(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.lower:
 self.page_previous()
 return
 if v_adjustment.value > v_adjustment.lower:
 new_value = v_adjustment.value - \
 v_adjustment.step_increment
 if new_value < v_adjustment.lower:
 new_value = v_adjustment.lower
 v_adjustment.value = new_value

The Program 19

 def show_page(self, page_number):
 global PAGE_SIZE, current_word
 position = self.page_index[page_number]
 self.etext_file.seek(position)
 linecount = 0
 label_text = '\n\n\n'
 textbuffer = self.textview.get_buffer()
 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + unicode(line,
 'iso-8859-1')
 linecount = linecount + 1
 label_text = label_text + '\n\n\n'
 textbuffer.set_text(label_text)
 self.textview.set_buffer(textbuffer)

 def save_extracted_file(self, zipfile, filename):
 "Extract the file to a temp directory for viewing"
 filebytes = zipfile.read(filename)
 f = open("/tmp/" + filename, 'w')
 try:
 f.write(filebytes)
 finally:
 f.close

 def read_file(self, filename):
 "Read the Etext file"
 global PAGE_SIZE

 if zipfile.is_zipfile(filename):
 self.zf = zipfile.ZipFile(filename, 'r')
 self.book_files = self.zf.namelist()
 self.save_extracted_file(self.zf,
 self.book_files[0])
 currentFileName = "/tmp/" + self.book_files[0]
 else:
 currentFileName = filename

 self.etext_file = open(currentFileName,"r")
 self.page_index = [0]
 linecount = 0
 while self.etext_file:
 line = self.etext_file.readline()
 if not line:
 break
 linecount = linecount + 1
 if linecount >= PAGE_SIZE:
 position = self.etext_file.tell()
 self.page_index.append(position)
 linecount = 0
 if filename.endswith(".zip"):
 os.remove(currentFileName)

 def destroy_cb(self, widget, data=None):
 gtk.main_quit()

 def main(self, file_path):
 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
 self.window.connect("destroy", self.destroy_cb)
 self.window.set_title("Read Etexts")
 self.window.set_size_request(640, 480)
 self.window.set_border_width(0)
 self.read_file(file_path)
 self.scrolled_window = gtk.ScrolledWindow(
 hadjustment=None, vadjustment=None)
 self.textview = gtk.TextView()
 self.textview.set_editable(False)

The Program 20

 self.textview.set_left_margin(50)
 self.textview.set_cursor_visible(False)
 self.textview.connect("key_press_event",
 self.keypress_cb)
 buffer = self.textview.get_buffer()
 self.font_desc = pango.FontDescription("sans 12")
 font_size = self.font_desc.get_size()
 self.textview.modify_font(self.font_desc)
 self.show_page(0)
 self.scrolled_window.add(self.textview)
 self.window.add(self.scrolled_window)
 self.textview.show()
 self.scrolled_window.show()
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 self.window.show()
 gtk.main()

if __name__ == "__main__":
 try:
 opts, args = getopt.getopt(sys.argv[1:], "")
 ReadEtexts().main(args[0])
 except getopt.error, msg:
 print msg
 print "This program has no options"
 sys.exit(2)

Running The Program

To run the program you should first make it executable. You only need to do this once:

chmod 755 ReadEtexts.py

For this example I downloaded the file for Pride and Prejudice. The program will work with either of the
Plain text formats, which are either uncompressed text or a Zip file. The zip file is named 1342.zip, and we
can read the book by running this from a terminal:

./ReadEtexts.py 1342.zip

This is what the program looks like in action:

 Running The Program 21

You can use the Page Up, Page Down, Up, Down, Left, and Right keys to navigate through the book and the
'+' and '-' keys to adjust the font size.

How The Program Works

This program reads through the text file containing the book and divides it into pages of 45 lines each. We
need to do this because the gtk.TextView component we use for viewing the text would need a lot of memory
to scroll through the whole book and that would hurt performance. A second reason is that we want to make
reading the e-book as much as possible like reading a regular book, and regular books have pages. If a teacher
assigns reading from a book she might say "read pages 35-50 for tommorow". Finally, we want this program
to remember what page you stopped reading on and bring you back to that page again when you read the book
next time. (The program we have so far doesn't do that yet).

To page through the book we use random access to read the file. To understand what random access means
to a file, consider a VHS tape and a DVD. To get to a certain scene in a VHS tape you need to go through all
the scenes that came before it, in order. Even though you do it at high speed you still have to look at all of
them to find the place you want to start watching. This is sequential access. On the other hand a DVD has
chapter stops and possibly a chapter menu. Using a chapter menu you can look at any scene in the movie
right away, and you can skip around as you like. This is random access, and the chapter menu is like an
index. Of course you can access the material in a DVD sequentially too.

We need random access to skip to whatever page we like, and we need an index so that we know where each
page begins. We make the index by reading the entire file one line at a time. Every 45 lines we make a note
of how many characters into the file we've gotten and store this information in a Python list. Then we go back
to the beginning of the file and display the first page. When the program user goes to the next or previous
page we figure out what the new page number will be and look in the list entry for that page. This tells us that
page starts 4,200 characters into the file. We use seek() on the file to go to that character and then we read 45
lines starting at that point and load them into the TextView.

When you run this program notice how fast it is. Python programs take longer to run a line of code than a
compiled language would, but in this program it doesn't matter because the heavy lifting in the program is

How The Program Works 22

done by the TextView, which was created in a compiled language. The Python parts don't do that much so the
program doesn't spend much time running them.

Sugar uses Python a lot, not just for Activities but for the Sugar environment itself. You may read somewhere
that using so much Python is "a disaster" for performance. Don't believe it.

There are no slow programming languages, only slow programmers.

How The Program Works 23

Inherit From sugar.activity.Activity

Object Oriented Python

Python supports two styles of programming: procedural and object oriented. Procedural programming is
when you have some input data, do some processing on it, and produce an output. If you want to calculate all
the prime numbers under a hundred or convert a Word document into a plain text file you'll probably use the
procedural style to do that.

Object oriented programs are built up from units called objects. An object is described as a collection of fields
or attributes containing data along with methods for doing things with that data. In addition to doing work and
storing data objects can send messages to one another.

Consider a word processing program. It doesn't have just one input, some process, and one output. It can
receive input from the keyboard, from the mouse buttons, from the mouse traveling over something, from the
clipboard, etc. It can send output to the screen, to a file, to a printer, to the clipboard, etc. A word processor
can edit several documents at the same time too. Any program with a GUI is a natural fit for the object
oriented style of programming.

Objects are described by classes. When you create an object you are creating an instance of a class.

There's one other thing that a class can do, which is to inherit methods and attributes from another class.
When you define a class you can say it extends some class, and by doing that in effect your class has the
functionality of the other class plus its own functionality. The extended class becomes its parent.

All Sugar Activities extend a Python class called sugar.activity.Activity. This class provides methods that all
Activities need. In addition to that, there are methods that you can override in your own class that the parent
class will call when it needs to. For the beginning Activity writer three methods are important:

__init__()

This is called when your Activity is started up. This is where you will set up the user interface for your
Activity, including toolbars.

read_file(self, file_path)

This is called when you resume an Activity from a Journal entry. It is called after the __init__() method is
called. The file_path parameter contains the name of a temporary file that is a copy of the file in the Journal
entry. The file is deleted as soon as this method finishes, but because Sugar runs on Linux if you open the file
for reading your program can continue to read it even after it is deleted and it the file will not actually go away
until you close it.

write_file(self, file_path)

This is called when the Activity updates the Journal entry. Just like with read_file() your Activity does not
work with the Journal directly. Instead it opens the file named in file_path for output and writes to it. That file
in turn is copied to the Journal entry.

There are three things that can cause write_file() to be executed:

Your Activity closes.•
Someone presses the Keep button in the Activity toolbar.•

Inherit From sugar.activity.Activity 24

Your Activity ceases to be the active Activity, or someone moves from the Activity View to some
other View.

•

In addition to updating the file in the Journal entry the read_file() and write_file() methods are used to read
and update the metadata in the Journal entry.

When we convert our standalone Python program to an Activity we'll take out much of the code we wrote and
replace it with code inherited from the sugar.activity.Activity class.

Extending The Activity Class

Here's a version of our program that extends Activity. You'll find it in the Git repository in the directory
Inherit_From_sugar.activity.Activity under the name ReadEtextsActivity.py:

import sys
import os
import zipfile
import pygtk
import gtk
import pango
from sugar.activity import activity
from sugar.graphics import style

page=0
PAGE_SIZE = 45

class ReadEtextsActivity(activity.Activity):
 def __init__(self, handle):
 "The entry point to the Activity"
 global page
 activity.Activity.__init__(self, handle)

 toolbox = activity.ActivityToolbox(self)
 activity_toolbar = toolbox.get_activity_toolbar()
 activity_toolbar.keep.props.visible = False
 activity_toolbar.share.props.visible = False
 self.set_toolbox(toolbox)

 toolbox.show()
 self.scrolled_window = gtk.ScrolledWindow()
 self.scrolled_window.set_policy(gtk.POLICY_NEVER,
 gtk.POLICY_AUTOMATIC)
 self.scrolled_window.props.shadow_type = \
 gtk.SHADOW_NONE

 self.textview = gtk.TextView()
 self.textview.set_editable(False)
 self.textview.set_cursor_visible(False)
 self.textview.set_left_margin(50)
 self.textview.connect("key_press_event",
 self.keypress_cb)

 self.scrolled_window.add(self.textview)
 self.set_canvas(self.scrolled_window)
 self.textview.show()
 self.scrolled_window.show()
 page = 0
 self.textview.grab_focus()
 self.font_desc = pango.FontDescription("sans %d" %
 style.zoom(10))
 self.textview.modify_font(self.font_desc)

 def keypress_cb(self, widget, event):

Object Oriented Python 25

 "Respond when the user presses one of the arrow keys"
 keyname = gtk.gdk.keyval_name(event.keyval)
 print keyname
 if keyname == 'plus':
 self.font_increase()
 return True
 if keyname == 'minus':
 self.font_decrease()
 return True
 if keyname == 'Page_Up' :
 self.page_previous()
 return True
 if keyname == 'Page_Down':
 self.page_next()
 return True
 if keyname == 'Up' or keyname == 'KP_Up' \
 or keyname == 'KP_Left':
 self.scroll_up()
 return True
 if keyname == 'Down' or keyname == 'KP_Down' \
 or keyname == 'KP_Right':
 self.scroll_down()
 return True
 return False

 def page_previous(self):
 global page
 page=page-1
 if page < 0: page=0
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.upper -\
 v_adjustment.page_size

 def page_next(self):
 global page
 page=page+1
 if page >= len(self.page_index): page=0
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.lower

 def font_decrease(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size - 1
 if font_size < 1:
 font_size = 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def font_increase(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size + 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def scroll_down(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.upper - \
 v_adjustment.page_size:
 self.page_next()
 return
 if v_adjustment.value < v_adjustment.upper -\
 v_adjustment.page_size:

Extending The Activity Class 26

 new_value = v_adjustment.value +\
 v_adjustment.step_increment
 if new_value > v_adjustment.upper -\
 v_adjustment.page_size:
 new_value = v_adjustment.upper -\
 v_adjustment.page_size
 v_adjustment.value = new_value

 def scroll_up(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.lower:
 self.page_previous()
 return
 if v_adjustment.value > v_adjustment.lower:
 new_value = v_adjustment.value - \
 v_adjustment.step_increment
 if new_value < v_adjustment.lower:
 new_value = v_adjustment.lower
 v_adjustment.value = new_value

 def show_page(self, page_number):
 global PAGE_SIZE, current_word
 position = self.page_index[page_number]
 self.etext_file.seek(position)
 linecount = 0
 label_text = '\n\n\n'
 textbuffer = self.textview.get_buffer()
 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + unicode(line,
 'iso-8859-1')
 linecount = linecount + 1
 label_text = label_text + '\n\n\n'
 textbuffer.set_text(label_text)
 self.textview.set_buffer(textbuffer)

 def save_extracted_file(self, zipfile, filename):
 "Extract the file to a temp directory for viewing"
 filebytes = zipfile.read(filename)
 outfn = self.make_new_filename(filename)
 if (outfn == ''):
 return False
 f = open(os.path.join(self.get_activity_root(),
 'instance', outfn), 'w')
 try:
 f.write(filebytes)
 finally:
 f.close

 def read_file(self, filename):
 "Read the Etext file"
 global PAGE_SIZE

 if zipfile.is_zipfile(filename):
 self.zf = zipfile.ZipFile(filename, 'r')
 self.book_files = self.zf.namelist()
 self.save_extracted_file(self.zf,
 self.book_files[0])
 currentFileName = os.path.join(
 self.get_activity_root(),
 'instance', self.book_files[0])
 else:
 currentFileName = filename

 self.etext_file = open(currentFileName,"r")
 self.page_index = [0]

Extending The Activity Class 27

 linecount = 0
 while self.etext_file:
 line = self.etext_file.readline()
 if not line:
 break
 linecount = linecount + 1
 if linecount >= PAGE_SIZE:
 position = self.etext_file.tell()
 self.page_index.append(position)
 linecount = 0
 if filename.endswith(".zip"):
 os.remove(currentFileName)
 self.show_page(0)

 def make_new_filename(self, filename):
 partition_tuple = filename.rpartition('/')
 return partition_tuple[2]

This program has some significant differences from the standalone version. First, note that this line:

#! /usr/bin/env python

has been removed. We are no longer running the program directly from the Python interpreter. Now Sugar is
running it as an Activity. Notice that much (but not all) of what was in the main() method has been moved to
the __init__() method and the main() method has been removed.

Notice too that the class statement has changed:

class ReadEtextsActivity(activity.Activity)

This statement now tells us that class ReadEtextsActivity extends the class sugar.activity.Activity. As a
result it inherits the code that is in that class. Therefore we no longer need a GTK main loop, or to define a
window. The code in this class we extend will do that for us.

While we gain much from this inheritance, we lose something too: a title bar for the main window. In a
graphical operating environment a piece of software called a window manager is responsible for putting
borders on windows, making them resizeable, reducing them to icons, maximizing them, etc. Sugar uses a
window manager named Matchbox which makes each window fill the whole screen and puts no border, title
bar, or any other window decorations on the windows. As a result of that we can't close our application by
clicking on the "X" in the title bar as before. To make up for this we need to have a toolbar that contains a
Close button. Thus every Activity has an Activity toolbar that contains some standard controls and buttons.
If you look at the code you'll see I'm hiding a couple of controls which we have no use for yet.

The read_file() method is no longer called from the main() method and doesn't seem to be called from
anywhere in the program. Of course it does get called, by some of the Activity code we inherited from our
new parent class. Similarly the __init__() and write_file() methods (if we had a write_file() method) get
called by the parent Activity class.

If you're especially observant you might have noticed another change. Our original standalone program
created a temporary file when it needed to extract something from a Zip file. It put that file in a directory
called /tmp. Our new Activity still creates the file but puts it in a different directory, one specific to the
Activity.

All writing to the file system is restricted to subdirectories of the path given by self.get_activity_root(). This
method will give you a directory that belongs to your Activity alone. It will contain three subdirectories with
different policies:

Extending The Activity Class 28

data
This directory is used for data such as configuration files. Files stored here will survive reboots and
OS upgrades.

tmp
This directory is used similar to the /tmp directory, being backed by RAM. It may be as small as 1
MB. This directory is deleted when the activity exits.

instance
This directory is similar to the tmp directory, being backed by the computer's drive rather than by
RAM. It is unique per instance. It is used for transfer to and from the Journal. This directory is deleted
when the activity exits.

Making these changes to the code is not enough to make our program an Activity. We have to do some
packaging work and get it set up to run from the Sugar emulator. We also need to learn how to run the Sugar
emulator. That comes next!

Extending The Activity Class 29

Package The Activity

Add setup.py

You'll need to add a Python program called setup.py to the same directory that you Activity program is in.
Every setup.py is exactly the same as every other setup.py. The copies in our Git repository look like this:

#!/usr/bin/env python

Copyright (C) 2006, Red Hat, Inc.
#
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation; either version 2 of the License, or (at
your option) any later version.
#
This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
#
You should have received a copy of the GNU General
Public License along with this program; if not,
write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

from sugar.activity import bundlebuilder

bundlebuilder.start()

Be sure and copy the entire text above, including the comments.

The setup.py program is used by sugar for a number of purposes. If you run setup.py from the command line
you'll see the options that are used with it and what they do.

[jim@simmons bookexamples]$./setup.py
/usr/lib/python2.6/site-packages/sugar/util.py:25:
DeprecationWarning: the sha module is deprecated;
use the hashlib module instead
 import sha
Available commands:

build Build generated files
dev Setup for development
dist_xo Create a xo bundle package
dist_source Create a tar source package
fix_manifest Add missing files to the manifest
genpot Generate the gettext pot file
install Install the activity in the system

(Type "./setup.py <command> --help" for help about a
particular command's options.

We'll be running some of these commands later on. Don't be concerned about the DeprecationWarning
message. That is just Python's way of telling us that it has a new way of doing something that is better but the
old way we are using still works. The error is coming from code in Sugar itself and should be fixed in some
future Sugar release.

Package The Activity 30

Create activity.info

Next create a directory within the one your progam is in and name it activity. Create a file named
activity.info within that directory and enter the lines below into it. Here is the one for our first Activity:

[Activity]
name = Read ETexts II
service_name = net.flossmanuals.ReadEtextsActivity
icon = read-etexts
exec = sugar-activity ReadEtextsActivity.ReadEtextsActivity
show_launcher = no
activity_version = 1
mime_types = text/plain;application/zip
license = GPLv2+

This file tells Sugar how to run your Activity. The properties needed in this file are:

name The name of your Activity as it will appear to the user.

service_name
A unique name that Sugar will use to refer to your Activity. Any Journal entry created by
your Activity will have this name stored in its metadata, so that when someone resumes
the Journal entry Sugar knows to use the program that created it to read it.

icon The name of the icon file you have created for the Activity. Since icons are always .svg
files the icon file in the example is named read-etexts.svg.

exec This tells Sugar how to launch your Activity. What it says is to create an instance of the
class ReadEtextsActivity which it will find in file ReadEtextsActivity.py.

show_launcher There are two ways to launch an Activity. The first is to click on the icon in the Activity
view. The second is to resume an entry in the Journal. Activities that don't create Journal
entries can only be resumed from the Journal, so there is no point in putting an icon in the
Activity ring for them. Read Etexts is an Activity like that.

activity_version An integer that represents the version number of your program. The first version is 1, the
next is 2, and so on.

mime_types Generally when you resume a Journal entry it launches the Activity that created it. In the
case of an e-book it wasn't created by any Activity, so we need another way to tell the
Journal which Activity it can use. A MIME type is the name of a common file format.
Some examples are text/plain, text/html, application/zip and application/pdf. In this entry
we're telling the Journal that our program can handle either plain text files or Zip archive
files.

license Owning a computer program is not like buying a car. With a car, you're the owner and
you can do what you like with it. You can sell it, rent it out, make it into a hot rod,
whatever. With a computer program there is always a license that tells the person
receiving the program what he is allowed to do with it. GPLv2+ is a popular standard
license that can be used for Activities, and since this is my program that is what goes here.
When you're ready to distribute one of your Activities I'll have more to say about licenses.

Create An Icon

Next we need to create an icon named read-etexts.svg and put it in the activity subdirectory. â�� We're
going to use Inkscape to create the icon. From the New menu in Inkscape select icon_48x48. This will create
a drawing area that is a good size.

You don't need to be an expert in Inkscape to create an icon. In fact the less fancy your icon is the better.
When drawing your icon remember the following points:

Create activity.info 31

Your icon needs to look good in sizes ranging from really, really small to large.•
It needs to be recognizeable when its really, really small.•
You only get to use two colors: a stroke color and a fill color. It doesn't matter which ones you
choose because Sugar will need to override your choices anyway, so just use black strokes on a white
background.

•

A fill color is only applied to an area that is contained within an unbroken stroke. If you draw a box
and one of the corners doesn't quite connect the area inside that box will not be filled. Free hand
drawing is only for the talented. Circles, boxes, and arcs are easy to draw with Inkscape so use them
when you can.

•

Inkscape will also draw 3D boxes using two point perspective. Don't use them. Icons should be flat
images. 3D just doesn't look good in an icon.

•

Coming up with good ideas for icons is tough. I once came up with a rather nice picture of a library
card catalog drawer for Get Internet Archive Books. The problem is, no child under the age of forty
has ever seen a card catalog and fewer still understand its purpose.

•

When you're done making your icon you need to modify it so it can work with Sugar. Specifically, you need
to make it show Sugar can use its own choice of stroke color and fill color. The SVG file format is based on
XML, which means it is a text file with some special tags in it. This means that once we have finished editing
it in Inkscape we can load the file into Eric and edit it as a text file.

I'm not going to put the entire file in this chapter because most of it you'll just leave alone. The first part you
need to modify is at the very beginning.

Before:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg

After:

<?xml version="1.0" ?>
<!DOCTYPE svg PUBLIC '-//W3C//DTD SVG 1.1//EN'
 'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd' [
 <!ENTITY stroke_color "#000000">
 <!ENTITY fill_color "#FFFFFF">
]><svg

Now in the body of the document you'll find references to fill and stroke as part of an attribute called style.
Every line or shape you draw will have these, like this:

<rect
 style="fill:#ffffff;stroke:#000000;stroke-opacity:1"
 id="rect904"
 width="36.142857"
 height="32.142857"
 x="4.1428571"
 y="7.1428571" />

You need to change each one to look like this:

<rect
 style="fill:&fill_color;;stroke:&stroke_color;
;stroke-opacity:1"
 id="rect904"
 width="36.142857"
 height="32.142857"
 x="4.1428571"
 y="7.1428571" />

Create An Icon 32

Note that &stroke_color; and &fill_color; both end with semicolons (;), and semicolons are also used to
separate the properties for style. Because of this it is an extremely common beginner's mistake to leave off
the trailing semicolon because two semicolons in a row don't look right. Be assured that the two semicolons
in a row are intentional and absolutely necessary! Second, the value for style should all go on one line. We
split it here to make it fit on the printed page; do not split it in your own icon!

Make a MANIFEST File

You should remember that setup.py has an option to update a manifest. Let's try it:

./setup.py fix_manifest
/usr/lib/python2.6/site-packages/sugar/util.py:25:
DeprecationWarning: the sha module is deprecated;
use the hashlib module instead
 import sha
WARNING:root:Missing po/ dir, cannot build_locale
WARNING:root:Activity directory lacks a MANIFEST file.

This actually will build a MANIFEST file containing everything in the directory and its subdirectories. The
/po directory it is complaining about is used to translate Activities into different languages. We can ignore
that for now.

The MANIFEST file it creates will contain some extra stuff, so we need to get rid of the extra lines using
Eric. The corrected MANIFEST should look like this:

setup.py
ReadEtextsActivity.py
activity/read-etexts.svg
activity/activity.info

Install The Activity

There's just one more thing to do before we can test our Activity under the Sugar emulator. We need to install
it, which in this case means making a symbolic link between the directory we're using for our code in the
~/Activities/ directory. The symbol ~ refers to the "home" directory of the user we're running Sugar under,
and a symbolic link is a way to make a file or directory appear to be located in more than one place without
copying it. We make this symbolic link by running setup.py again:

./setup.py dev

Running Our Activity

Now at last we can run our Activity under Sugar. To do that we need to learn how to run sugar-emulator.

Fedora doesn't make a menu option for Sugar Emulator, but it's easy to add one yourself. The command to
run is simply

sugar-emulator

If your screen resolution is smaller than the default size sugar-emulator runs at it will run full screen. This is
not convenient for testing, so you may want to specify your own size:

sugar-emulator -i 800x600

Note that this option only exists in Fedora 11 and later.

Make a MANIFEST File 33

When you run sugar-emulator a window opens up and the Sugar environment starts up and runs inside it. It
looks like this:

When running sugar-emulator you may find that some keys don't seem to work in the Sugar environment.
This is caused by bugs in the Xephyr software that creates the window that Sugar runs in. Sometimes it has
difficulty identifying your keyboard and as a result some keys get misinterpreted. On Fedora 11 I noticed that
my function keys did not work, and my regular arrow keys didn't work either although my keypad arrow keys
did. I was able to get my function keys working again by putting this line in ~/.sugar/debug:

run setxkbmap <keymap name>

This needs more explanation. First, the symbol "~" refers to your home directory. Second, any file named
starting with a period is considered hidden in Linux, so you'll need to use the option to show hidden files and
directories in the GNOME directory browser to navigate to it. Finally, the keymap name is a two character
country code: us for the United States, fr for France, de for Germany, etc.

To test our Activity we're going to need to have a book in the Journal, so use the Browse Activity to visit
Project Gutenberg again and download the book of your choice. This time it's important to download the
book in Zip format, because Browse cannot download a plain text file to the Journal. Instead, it opens the file
for viewing as if it was a web page. If you try the same thing with the Zip file it will create an entry in the
Journal.

We can't just open the file with one click in the Journal because our program did not create the Journal entry
and there are several Activities that support the MIME type of the Journal entry. We need to use the Start
With menu option like this:

Running Our Activity 34

When we do open the Journal entry this is what we see:

Technically, this is the first iteration of our Activity. (Iteration is a vastly useful word meaning something
you do more than once. In this book we're building our Activity a bit at a time so I can demonstrate Activity
writing principles, but actually building a program in pieces, testing it, getting feedback, and building a bit
more can be a highly productive way of creating software. Using the word iteration to describe each step in
the process makes the process sound more formal than it really is).

While this Activity might be good enough to show your own mother, we really should improve it a bit before
we do that. That part comes next.

Running Our Activity 35

Add Refinements

Toolbars

It is a truth universally acknowledged that a first rate Activity needs good Toolbars. In this chapter we'll learn
how to make them. We're going to put the toolbar classes in a separate file from the rest, because there are
two styles of toolbar (old and new) and we may want to support both in our Activity. If we have two different
files containing toolbar classes our code can decide at runtime which one it wants to use. For now, this code
supports the old style, which works with every version of Sugar. The new style is currently only supported by
Sugar on a Stick.

There is a file called toolbar.py in the Add_Refinements directory of the Git repository that looks like this:

from gettext import gettext as _
import re

import pango
import gobject
import gtk

from sugar.graphics.toolbutton import ToolButton
from sugar.activity import activity

class ReadToolbar(gtk.Toolbar):
 __gtype_name__ = 'ReadToolbar'

 def __init__(self):
 gtk.Toolbar.__init__(self)

 self.back = ToolButton('go-previous')
 self.back.set_tooltip(_('Back'))
 self.back.props.sensitive = False
 self.insert(self.back, -1)
 self.back.show()

 self.forward = ToolButton('go-next')
 self.forward.set_tooltip(_('Forward'))
 self.forward.props.sensitive = False
 self.insert(self.forward, -1)
 self.forward.show()

 num_page_item = gtk.ToolItem()

 self.num_page_entry = gtk.Entry()
 self.num_page_entry.set_text('0')
 self.num_page_entry.set_alignment(1)
 self.num_page_entry.connect('insert-text',
 self.num_page_entry_insert_text_cb)

 self.num_page_entry.set_width_chars(4)

 num_page_item.add(self.num_page_entry)
 self.num_page_entry.show()

 self.insert(num_page_item, -1)
 num_page_item.show()

 total_page_item = gtk.ToolItem()

 self.total_page_label = gtk.Label()

 label_attributes = pango.AttrList()

Add Refinements 36

 label_attributes.insert(pango.AttrSize(
 14000, 0, -1))
 label_attributes.insert(pango.AttrForeground(
 65535, 65535, 65535, 0, -1))
 self.total_page_label.set_attributes(
 label_attributes)

 self.total_page_label.set_text(' / 0')
 total_page_item.add(self.total_page_label)
 self.total_page_label.show()

 self.insert(total_page_item, -1)
 total_page_item.show()

 def num_page_entry_insert_text_cb(self, entry, text,
 length, position):
 if not re.match('[0-9]', text):
 entry.emit_stop_by_name('insert-text')
 return True
 return False

 def update_nav_buttons(self):
 current_page = self.current_page
 self.back.props.sensitive = current_page > 0
 self.forward.props.sensitive = \
 current_page < self.total_pages - 1

 self.num_page_entry.props.text = str(
 current_page + 1)
 self.total_page_label.props.label = \
 ' / ' + str(self.total_pages)

 def set_total_pages(self, pages):
 self.total_pages = pages

 def set_current_page(self, page):
 self.current_page = page
 self.update_nav_buttons()

class ViewToolbar(gtk.Toolbar):
 __gtype_name__ = 'ViewToolbar'

 __gsignals__ = {
 'needs-update-size': (gobject.SIGNAL_RUN_FIRST,
 gobject.TYPE_NONE,
 ([])),
 'go-fullscreen': (gobject.SIGNAL_RUN_FIRST,
 gobject.TYPE_NONE,
 ([]))
 }

 def __init__(self):
 gtk.Toolbar.__init__(self)
 self.zoom_out = ToolButton('zoom-out')
 self.zoom_out.set_tooltip(_('Zoom out'))
 self.insert(self.zoom_out, -1)
 self.zoom_out.show()

 self.zoom_in = ToolButton('zoom-in')
 self.zoom_in.set_tooltip(_('Zoom in'))
 self.insert(self.zoom_in, -1)
 self.zoom_in.show()

 spacer = gtk.SeparatorToolItem()
 spacer.props.draw = False
 self.insert(spacer, -1)
 spacer.show()

Toolbars 37

 self.fullscreen = ToolButton('view-fullscreen')
 self.fullscreen.set_tooltip(_('Fullscreen'))
 self.fullscreen.connect('clicked',
 self.fullscreen_cb)
 self.insert(self.fullscreen, -1)
 self.fullscreen.show()

 def fullscreen_cb(self, button):
 self.emit('go-fullscreen')

Another file in the same directory of the Git repository is named ReadEtextsActivity2.py. It looks like this:

import os
import zipfile
import gtk
import pango
from sugar.activity import activity
from sugar.graphics import style
from toolbar import ReadToolbar, ViewToolbar
from gettext import gettext as _

page=0
PAGE_SIZE = 45
TOOLBAR_READ = 2

class ReadEtextsActivity(activity.Activity):
 def __init__(self, handle):
 "The entry point to the Activity"
 global page
 activity.Activity.__init__(self, handle)

 toolbox = activity.ActivityToolbox(self)
 activity_toolbar = toolbox.get_activity_toolbar()
 activity_toolbar.keep.props.visible = False
 activity_toolbar.share.props.visible = False

 self.edit_toolbar = activity.EditToolbar()
 self.edit_toolbar.undo.props.visible = False
 self.edit_toolbar.redo.props.visible = False
 self.edit_toolbar.separator.props.visible = False
 self.edit_toolbar.copy.set_sensitive(False)
 self.edit_toolbar.copy.connect('clicked',
 self.edit_toolbar_copy_cb)
 self.edit_toolbar.paste.props.visible = False
 toolbox.add_toolbar(_('Edit'), self.edit_toolbar)
 self.edit_toolbar.show()

 self.read_toolbar = ReadToolbar()
 toolbox.add_toolbar(_('Read'), self.read_toolbar)
 self.read_toolbar.back.connect('clicked',
 self.go_back_cb)
 self.read_toolbar.forward.connect('clicked',
 self.go_forward_cb)
 self.read_toolbar.num_page_entry.connect('activate',
 self.num_page_entry_activate_cb)
 self.read_toolbar.show()

 self.view_toolbar = ViewToolbar()
 toolbox.add_toolbar(_('View'), self.view_toolbar)
 self.view_toolbar.connect('go-fullscreen',
 self.view_toolbar_go_fullscreen_cb)
 self.view_toolbar.zoom_in.connect('clicked',
 self.zoom_in_cb)
 self.view_toolbar.zoom_out.connect('clicked',
 self.zoom_out_cb)

Toolbars 38

 self.view_toolbar.show()

 self.set_toolbox(toolbox)
 toolbox.show()
 self.scrolled_window = gtk.ScrolledWindow()
 self.scrolled_window.set_policy(gtk.POLICY_NEVER,
 gtk.POLICY_AUTOMATIC)
 self.scrolled_window.props.shadow_type = \
 gtk.SHADOW_NONE

 self.textview = gtk.TextView()
 self.textview.set_editable(False)
 self.textview.set_cursor_visible(False)
 self.textview.set_left_margin(50)
 self.textview.connect("key_press_event",
 self.keypress_cb)

 self.scrolled_window.add(self.textview)
 self.set_canvas(self.scrolled_window)
 self.textview.show()
 self.scrolled_window.show()
 page = 0
 self.clipboard = gtk.Clipboard(
 display=gtk.gdk.display_get_default(),
 selection="CLIPBOARD")
 self.textview.grab_focus()
 self.font_desc = pango.FontDescription("sans %d" %
 style.zoom(10))
 self.textview.modify_font(self.font_desc)

 buffer = self.textview.get_buffer()
 self.markset_id = buffer.connect("mark-set",
 self.mark_set_cb)
 self.toolbox.set_current_toolbar(TOOLBAR_READ)

 def keypress_cb(self, widget, event):
 "Respond when the user presses one of the arrow keys"
 keyname = gtk.gdk.keyval_name(event.keyval)
 print keyname
 if keyname == 'plus':
 self.font_increase()
 return True
 if keyname == 'minus':
 self.font_decrease()
 return True
 if keyname == 'Page_Up' :
 self.page_previous()
 return True
 if keyname == 'Page_Down':
 self.page_next()
 return True
 if keyname == 'Up' or keyname == 'KP_Up' \
 or keyname == 'KP_Left':
 self.scroll_up()
 return True
 if keyname == 'Down' or keyname == 'KP_Down' \
 or keyname == 'KP_Right':
 self.scroll_down()
 return True
 return False

 def num_page_entry_activate_cb(self, entry):
 global page
 if entry.props.text:
 new_page = int(entry.props.text) - 1
 else:
 new_page = 0

Toolbars 39

 if new_page >= self.read_toolbar.total_pages:
 new_page = self.read_toolbar.total_pages - 1
 elif new_page < 0:
 new_page = 0

 self.read_toolbar.current_page = new_page
 self.read_toolbar.set_current_page(new_page)
 self.show_page(new_page)
 entry.props.text = str(new_page + 1)
 self.read_toolbar.update_nav_buttons()
 page = new_page

 def go_back_cb(self, button):
 self.page_previous()

 def go_forward_cb(self, button):
 self.page_next()

 def page_previous(self):
 global page
 page=page-1
 if page < 0: page=0
 self.read_toolbar.set_current_page(page)
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.upper -\
 v_adjustment.page_size

 def page_next(self):
 global page
 page=page+1
 if page >= len(self.page_index): page=0
 self.read_toolbar.set_current_page(page)
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.lower

 def zoom_in_cb(self, button):
 self.font_increase()

 def zoom_out_cb(self, button):
 self.font_decrease()

 def font_decrease(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size - 1
 if font_size < 1:
 font_size = 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def font_increase(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size + 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def mark_set_cb(self, textbuffer, iter, textmark):

 if textbuffer.get_has_selection():
 begin, end = textbuffer.get_selection_bounds()
 self.edit_toolbar.copy.set_sensitive(True)
 else:
 self.edit_toolbar.copy.set_sensitive(False)

Toolbars 40

 def edit_toolbar_copy_cb(self, button):
 textbuffer = self.textview.get_buffer()
 begin, end = textbuffer.get_selection_bounds()
 copy_text = textbuffer.get_text(begin, end)
 self.clipboard.set_text(copy_text)

 def view_toolbar_go_fullscreen_cb(self, view_toolbar):
 self.fullscreen()

 def scroll_down(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.upper - \
 v_adjustment.page_size:
 self.page_next()
 return
 if v_adjustment.value < v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.value + \
 v_adjustment.step_increment
 if new_value > v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.upper - \
 v_adjustment.page_size
 v_adjustment.value = new_value

 def scroll_up(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.lower:
 self.page_previous()
 return
 if v_adjustment.value > v_adjustment.lower:
 new_value = v_adjustment.value - \
 v_adjustment.step_increment
 if new_value < v_adjustment.lower:
 new_value = v_adjustment.lower
 v_adjustment.value = new_value

 def show_page(self, page_number):
 global PAGE_SIZE, current_word
 position = self.page_index[page_number]
 self.etext_file.seek(position)
 linecount = 0
 label_text = '\n\n\n'
 textbuffer = self.textview.get_buffer()
 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + unicode(line,
 'iso-8859-1')
 linecount = linecount + 1
 label_text = label_text + '\n\n\n'
 textbuffer.set_text(label_text)
 self.textview.set_buffer(textbuffer)

 def save_extracted_file(self, zipfile, filename):
 "Extract the file to a temp directory for viewing"
 filebytes = zipfile.read(filename)
 outfn = self.make_new_filename(filename)
 if (outfn == ''):
 return False
 f = open(os.path.join(self.get_activity_root(),
 'tmp', outfn), 'w')
 try:
 f.write(filebytes)
 finally:

Toolbars 41

 f.close()

 def get_saved_page_number(self):
 global page
 title = self.metadata.get('title', '')
 if title == '' or not title[len(title)- 1].isdigit():
 page = 0
 else:
 i = len(title) - 1
 newPage = ''
 while (title[i].isdigit() and i > 0):
 newPage = title[i] + newPage
 i = i - 1
 if title[i] == 'P':
 page = int(newPage) - 1
 else:
 # not a page number; maybe a volume number.
 page = 0

 def save_page_number(self):
 global page
 title = self.metadata.get('title', '')
 if title == '' or not title[len(title)-1].isdigit():
 title = title + ' P' + str(page + 1)
 else:
 i = len(title) - 1
 while (title[i].isdigit() and i > 0):
 i = i - 1
 if title[i] == 'P':
 title = title[0:i] + 'P' + str(page + 1)
 else:
 title = title + ' P' + str(page + 1)
 self.metadata['title'] = title

 def read_file(self, filename):
 "Read the Etext file"
 global PAGE_SIZE, page

 if zipfile.is_zipfile(filename):
 self.zf = zipfile.ZipFile(filename, 'r')
 self.book_files = self.zf.namelist()
 self.save_extracted_file(self.zf,
 self.book_files[0])
 currentFileName = os.path.join(
 self.get_activity_root(),
 'tmp', self.book_files[0])
 else:
 currentFileName = filename

 self.etext_file = open(currentFileName,"r")
 self.page_index = [0]
 pagecount = 0
 linecount = 0
 while self.etext_file:
 line = self.etext_file.readline()
 if not line:
 break
 linecount = linecount + 1
 if linecount >= PAGE_SIZE:
 position = self.etext_file.tell()
 self.page_index.append(position)
 linecount = 0
 pagecount = pagecount + 1
 if filename.endswith(".zip"):
 os.remove(currentFileName)
 self.get_saved_page_number()
 self.show_page(page)

Toolbars 42

 self.read_toolbar.set_total_pages(pagecount + 1)
 self.read_toolbar.set_current_page(page)

 def make_new_filename(self, filename):
 partition_tuple = filename.rpartition('/')
 return partition_tuple[2]

 def write_file(self, filename):
 "Save meta data for the file."
 self.metadata['activity'] = self.get_bundle_id()
 self.save_page_number()

This is the activity.info for this example:

[Activity]
name = Read ETexts II
service_name = net.flossmanuals.ReadEtextsActivity
icon = read-etexts
exec = sugar-activity ReadEtextsActivity2.ReadEtextsActivity
show_launcher = no
activity_version = 1
mime_types = text/plain;application/zip
license = GPLv2+

The line in bold is the only one that needs changing. When we run this new version this is what we'll see:

There are a few things worth pointing out in this code. First, have a look at this import:

from gettext import gettext as _

We'll be using the gettext module of Python to support translating our Activity into other languages. We'll be
using it in statements like this one:

 self.back.set_tooltip(_('Back'))

Toolbars 43

The underscore acts the same way as the gettext function because of the way we imported gettext. The effect
of this statement will be to look in a special translation file for a word or phrase that matches the key "Back"
and replace it with its translation. If there is no translation file for the language we want then it will simply
use the word "Back". We'll explore setting up these translation files later, but for now using gettext for all of
the words and phrases we will show to our Activity users lays some important groundwork.

The second thing worth pointing out is that while our revised Activity has four toolbars we only had to create
two of them. The other two, Activity and Edit, are part of the Sugar Python library. We can use those
toolbars as is, hide the controls we don't need, or even extend them by adding new controls. In the example
we're hiding the Keep and Share controls of the Activity toolbar and the Undo, Redo, and Paste buttons of
the Edit toolbar. We currently do not support sharing books or modifying the text in books so these controls
are not needed. Note too that the Activity toolbar is part of the ActivityToolbox. There is no way to give
your Activity a toolbox that does not contain the Activity toolbar as its first entry.

Another thing to notice is that the Activity class doesn't just provide us with a window. The window has a
VBox to hold our toolbars and the body of our Activity. We install the toolbox using set_toolbox() and the
body of the Activity using set_canvas().

The Read and View toolbars are regular PyGtk programming, but notice that there is a special button for
Sugar toolbars that can have a tooltip attached to it, plus the View toolbar has code to hide the toolbox and
ReadEtextsActivity2 has code to unhide it. This is an easy function to add to your own Activities and many
games and other kinds of Activities can benefit from the increased screen area you get when you hide the
toolbox.

Metadata And Journal Entries

Every Journal entry represents a single file plus metadata, or information describing the file. There are
standard metadata entries that all Journal entries have and you can also create your own custom metadata.

Unlike ReadEtextsActivity, this version has a write_file() method.

 def write_file(self, filename):
 "Save meta data for the file."
 self.metadata['activity'] = self.get_bundle_id()
 self.save_page_number()

We didn't have a write_file() method before because we weren't going to update the file the book is in, and we
still aren't. We will, however, be updating the metadata for the Journal entry. Specifically, we'll be doing two
things:

Save the page number our Activity user stopped reading on so when he launches the Activity again
we can return to that page.

•

Tell the Journal entry that it belongs to our Activity, so that in the future it will use our Activity's icon
and can launch our Activity with one click.

•

The way the Read Activity saves page number is to use a custom metadata property.

 self.metadata['Read_current_page'] = \
 str(self._document.get_page_cache().get_current_page())

Read creates a custom metadata property named Read_current_page to store the current page number. You
can create any number of custom metadata properties just this easily, so you may wonder why we aren't doing
that with Read Etexts. Actually, the first version of Read Etexts did use a custom property, but in Sugar .82
or lower there was a bug in the Journal such that custom metadata did not survive after the computer was
turned off. As a result my Activity would remember pages numbers while the computer was running, but

Metadata And Journal Entries 44

would forget them as soon as it was shut down. XO laptops currently cannot upgrade to anything newer than
.82, and when it is possible to upgrade it will be a big job for the schools.

To get around this problem I created the following two methods:

 def get_saved_page_number(self):
 global page
 title = self.metadata.get('title', '')
 if title == '' or not title[len(title)-1].isdigit():
 page = 0
 else:
 i = len(title) - 1
 newPage = ''
 while (title[i].isdigit() and i > 0):
 newPage = title[i] + newPage
 i = i - 1
 if title[i] == 'P':
 page = int(newPage) - 1
 else:
 # not a page number; maybe a volume number.
 page = 0

 def save_page_number(self):
 global page
 title = self.metadata.get('title', '')
 if title == '' or not title[len(title)-1].isdigit():
 title = title + ' P' + str(page + 1)
 else:
 i = len(title) - 1
 while (title[i].isdigit() and i > 0):
 i = i - 1
 if title[i] == 'P':
 title = title[0:i] + 'P' + str(page + 1)
 else:
 title = title + ' P' + str(page + 1)
 self.metadata['title'] = title

save_page_number() looks at the current title metadata and either adds a page number to the end of it or
updates the page number already there. Since title is standard metadata for all Journal entries the Journal bug
does not affect it.

These examples show how to read metadata too.

 title = self.metadata.get('title', '')

This line of code says "Get the metadata property named title and put it in the variable named title, If there is
no title property put an empty string in title.

Generally you will save metadata in the write_file() method and read it in the read_file() method.

In a normal Activity that writes out a file in write_file() this next line would be unnecessary:

 self.metadata['activity'] = self.get_bundle_id()

Any Journal entry created by an Activity will automatically have this property set. In the case of Pride and
Prejudice, our Activity did not create it. We are able to read it because our Activity supports its MIME type.
Unfortunately, that MIME type, application/zip, is used by other Activities. I found it very frustrating to want
to open a book in Read Etexts and accidentally have it opened in EToys instead. This line of code solves
that problem. You only need to use Start Using... the first time you read a book. After that the book will use
the Read Etexts icon and can be resumed with a single click.

Metadata And Journal Entries 45

This does not at all affect the MIME type of the Journal entry, so if you wanted to deliberately open Pride and
Prejudice with Etoys it is still possible.

Before we leave the subject of Journal metadata let's look at all the standard metadata that every Activity has.
Here is some code that creates a new Journal entry and updates a bunch of standard properties:

 def create_journal_entry(self, tempfile):
 journal_entry = datastore.create()
 journal_title = self.selected_title
 if self.selected_volume != '':
 journal_title += ' ' + _('Volume') + ' ' + \
 self.selected_volume
 if self.selected_author != '':
 journal_title = journal_title + ', by ' + \
 self.selected_author
 journal_entry.metadata['title'] = journal_title
 journal_entry.metadata['title_set_by_user'] = '1'
 journal_entry.metadata['keep'] = '0'
 format = \
 self._books_toolbar.format_combo.props.value
 if format == '.djvu':
 journal_entry.metadata['mime_type'] = \
 'image/vnd.djvu'
 if format == '.pdf' or format == '_bw.pdf':
 journal_entry.metadata['mime_type'] = \
 'application/pdf'
 journal_entry.metadata['buddies'] = ''
 journal_entry.metadata['preview'] = ''
 journal_entry.metadata['icon-color'] = \
 profile.get_color().to_string()
 textbuffer = self.textview.get_buffer()
 journal_entry.metadata['description'] = \
 textbuffer.get_text(textbuffer.get_start_iter(),
 textbuffer.get_end_iter())
 journal_entry.file_path = tempfile
 datastore.write(journal_entry)
 os.remove(tempfile)
 self._alert(_('Success'), self.selected_title + \
 _(' added to Journal.'))

This code is taken from an Activity I wrote that downloads books from a website and creates Journal entries
for them. The Journal entries contain a friendly title and a full description of the book.

Most Activities will only deal with one Journal entry by using the read_file() and write_file() methods but you
are not limited to that. In a later chapter I'll show you how to create and delete Journal entries, how to list the
contents of the Journal, and more.

We've covered a lot of technical information in this chapter and there's more to come, but before we get to that
we need to look at some other important topics:

Putting your Activity in version control. This will enable you to share your code with the world and
get other people to help work on it.

•

Getting your Activity translated into other languages.•
Distributing your finished Activity. (Or your not quite finished but still useful Activity).•

Metadata And Journal Entries 46

Add Your Activity Code To Version Control

What Is Version Control?

"If I have seen further it is only by standing on the shoulders of giants."

Isaac Newton, in a letter to Robert Hooke.

Writing an Activity is usually not something you do by yourself. You will usually have collaborators in one
form or another. When I started writing Read Etexts I copied much of the code from the Read Activity.
When I implemented text to speech I adapted a toolbar from the Speak Activity. When I finally got my
copied file sharing code working the author of Image Viewer thought it was good enough to copy into that
Activity. Another programmer saw the work I did for text to speech and thought he could do it better. He
was right, and his improvements got merged into my own code. When I wrote Get Internet Archive Books
someone else took the user interface I came up with and made a more powerful and versatile Activity called
Get Books. Like Newton, everyone benefits from the work others have done before.

Even if I wanted to write Activities without help I would still need collaborators to translate them into other
languages.

To make collaboration possible you need to have a place where everyone can post their code and share it.
This is called a code repository. It isn't enough to just share the latest version of your code. What you really
want to do is share every version of your code. Every time you make a significant change to your code you
want to have the new version and the previous version available. Not only do you want to have every version
of your code available, you want to be able to compare any two versions your code to see what changed
between them. This is what version control software does.

The three most popular version control tools are CVS, Subversion, and Git. Git is the newest and is the one
used by Sugar Labs. While not every Activity has its code in the Sugar Labs Git repository (other free code
repositories exist) there is no good reason not to do it and significant benefits if you do. If you want to get
your Activity translated into other languages using the Sugar Labs Git repository is a must.

Git Along Little Dogies

Git is a distributed version control system. This means that not only are there copies of every version of your
code in a central repository, the same copies exist on every user's computer. This means you can update your
local repository while you are not connected to the Internet, then connect and share everything at one time.

There are two ways you will interact with your Git repository: through Git commands and through the website
at http://git.sugarlabs.org/. We'll look at this website first.

Go to http://git.sugarlabs.org/ and click on the Projects link in the upper right corner:

Add Your Activity Code To Version Control 47

http://git.sugarlabs.org/.
http://git.sugarlabs.org

You will see a list of projects in the repository. They will be listed from newest to oldest. You'll also see a
New Project link but you'll need to create an account to use that and we aren't ready to do that yet.

If you use the Search link in the upper right corner of the page you'll get a search form. Use it to search for
"read etexts". Click on the link for that project when you find it. You should see something like this:

This page lists some of the activity for the project but I don't find it particularly useful. To get a much better
look at your project start by clicking on the repository name on the right side of the page. In this case the
repository is named mainline.

Git Along Little Dogies 48

You'll see something like this at the top of the page:

This page has some useful information on it. First, have a look at the Public clone url and the HTTP clone
url. You need to click on More info... to see either one. If you run either of these commands from the
console you will get a copy of the git repository for the project copied to your computer. This copy will
include every version of every piece of code in the project. You would need to modify it a bit before you
could share your changes back to the main repository, but everything would be there.

The list under Activities is not that useful, but if you click on the Source Tree link you'll see something really
good:

Git Along Little Dogies 49

Here is a list of every file in the project, the date it was last updated, and a comment on what was modified.
Click on the link for ReadEtextsActivity.py and you'll see this:

This is the latest code in that file in pretty print format. Python keywords are shown in a different color, there
are line numbers, etc. This is a good page for looking at code on the screen, but it doesn't print well and it's

Git Along Little Dogies 50

not much good for copying snippets of code into Eric windows either. For either of those things you'll want to
click on raw blob data at the top of the listing:

We're not done yet. Use the Back button to get back to the pretty print listing and click on the Commits link.
This will give us a list of everything that changed each time we committed code into Git:

You may have noticed the odd combination of letters and numbers after the words James Simmons
committed. This is a kind of version number. The usual practice with version control systems is to give each
version of code you check in a version number, usually a simple sequence number. Git is distributed, with

Git Along Little Dogies 51

many separate copies of the repository being modified independently and then merged. That makes using just
a sequential number to identify versions unworkable. Instead, Git gives each version a really, really large
random number. The number is expressed in base 16, which uses the symbols 0-9 and a-f. What you see in
green is only a small part of the complete number. The number is a link, and if you click on it you'll see this:

At the top of the page we see the complete version number used for this commit. Below the gray box we see
the full comment that was used to commit the changes. Below that is a listing of what files were changed. If
we look further down the page we see this:

Git Along Little Dogies 52

This is a diff report which shows the lines that have changed between this version and the previous version.
For each change it shows a few lines before and after the change to give you a better idea of what the change
does. Every change shows line numbers too.

A report like this is a wonderful aid to programming. Sometimes when you're working on an enhancement to
your program something that had been working mysteriously stops working. When that happens you will
wonder just what you changed that could have caused the problem. A diff report can help you find the source
of the problem.

By now you must be convinced that you want your project code in Git. Before we can do that we need to
create an account on this website. That is no more difficult than creating an account on any other website, but
it will need an important piece of information from us that we don't have yet. Getting that information is our
next task.

Setting Up SSH Keys

To send your code to the Gitorious code repository you need an SSH public/private key pair. â�� SSH is a
way of sending data over the network in encrypted format. (In other words, it uses a secret code so nobody
but the person getting the data can read it). Public/private key encryption is a way of encrypting data that
provides a way to guarantee that the person who is sending you the data is who he claims to be.

In simple terms it works like this: the SSH software generates two very large numbers that are used to encode
and decode the data going over the network. The first number, called the private key, is kept secret and is
only used by you to encode the data. The second number, called the public key, is given to anyone who
needs to decode your data. He can decode it using the public key; there is no need for him to know the private
key. He can also use the public key to encode a message to send back to you and you can decode it using
your private key.

Git uses SSH like an electronic signature to verify that code changes that are supposed to be coming from you
actually are coming from you. The Git repository is given your public key. It knows that anything it decodes

Setting Up SSH Keys 53

with that key must have been sent by you because only you have the private key needed to encode it.

We will be using a tool called OpenSSH to generate the public and private keys. This is included with every
version of Linux so you just need to verify that it has been installed. Then use the ssh-keygen utility that
comes with OpenSSH to generate the keys:

[jim@olpc2 ~]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/jim/.ssh/id_rsa):

By default ssh-keygen generates an RSA key, which is the kind we want. By default it puts the keyfiles in a
directory called /yourhome/.ssh and we want that too, so DO NOT enter a filename when it asks you to. Just
hit the Enter key to continue.

[jim@olpc2 ~]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/jim/.ssh/id_rsa):
Created directory '/home/jim/.ssh'.
Enter passphrase (empty for no passphrase):

Now we DO want a passphrase here. A passphrase is like a password that is used with the public and private
keys to do the encrypting. When you type it in you will not be able to see what you typed. Because of that it
will ask you to type the same thing again, and it will check to see that you typed them in the same way both
times.

[jim@olpc2 ~]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/jim/.ssh/id_rsa):
Created directory '/home/jim/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/jim/.ssh/id_rsa.
Your public key has been saved in /home/jim/.ssh/id_rsa.pub.
The key fingerprint is:
d0:fe:c0:0c:1e:72:56:7a:19:cd:f3:85:c7:4c:9e:18
jim@olpc2.simmons
The key's randomart image is:
+--[RSA 2048]----+
| oo E=. |
| + o+ .+=. |
| . B + o.oo |
| = O . |
| . S |
| o |
| . |
| |
| |
+-----------------+

When choosing a passphrase remember that it needs to be something you can type reliably without seeing it
and it would be better if it was not a word you can find in the dictionary, because those are easily broken.
When I need to make a password I use the tool at http://www.multicians.org/thvv/gpw.html. This tool
generates a bunch of nonsense words that are pronounceable. Pick one that appeals to you and use that.

Now have a look inside the .ssh directory. By convention every file or directory name that begins with a
period is considered hidden by Linux, so it won't show up in a GNOME file browser window unless you use
the option on the View menu to Show Hidden Files. When you display the contents of that directory you'll
see two files: id_rsa and id_rsa.pub. The public key is in id_rsa.pub. Try opening that file with gedit (Open
With Text Editor) and you'll see something like this:

Setting Up SSH Keys 54

http://www.multicians.org/thvv/gpw.html.

When you create your account on git.sugarlabs.org there will be a place where you can add your public SSH
key. To do that use Select All from the Edit menu in gedit, then Copy and Paste into the field provided on
the web form.

Create A New Project

I'm going to create a new Project in Git for the examples for this book. I need to log in with my new account
and click the New Project link we saw earlier. I get this form, which I have started filling in:

The Title is used on the website, the Slug is a shortened version of the title without spaces used to name the
Git repository. Categories are optional. License is GPL v2 for my projects. You can choose from any of the
licenses in the list for your own Projects, and you can change the license entry later if you want to. You will
also need to enter a Description for your project.

Once you have this set up you'll be able to click on the mainline entry for the Project (like we did with Read
Etexts before) and see something like this:

Create A New Project 55

http://git.sugarlabs.org

The next step is to convert our project files into a local Git repository, add the files to it, then push it to the
repository on git.sugarlabs.org. We need to do this because you cannot clone an empty repository, and our
remote repository is currently empty. To get around that problem we'll push the local repository out to the
new remote repository we just created, then clone the remote one and delete our existing project and its Git
repository. From then on we'll do all our work in the cloned repository.

This process may remind you of the Edward Albee quote, "Sometimes a person has to go a very long distance
out of his way to come back a short distance correctly". Fortunately we only need to do it once per project.
Enter the commands shown below in bold after making you project directory the current one:

git init
Initialized empty Git repository in
/home/jim/olpc/bookexamples/.git/
git add *.py
git add activity
git add MANIFEST
git add .gitignore
git commit -a -m "Create repository and load"
[master (root-commit) 727bfe8] Create repository and load
 9 files changed, 922 insertions(+), 0 deletions(-)
 create mode 100644 .gitignore
 create mode 100644 MANIFEST
 create mode 100755 ReadEtexts.py
 create mode 100644 ReadEtextsActivity.py
 create mode 100644 ReadEtextsActivity2.py
 create mode 100644 activity/activity.info
 create mode 100644 activity/read-etexts.svg
 create mode 100755 setup.py
 create mode 100644 toolbar.py

I have made an empty local Git repository with git init, then I've used git add to add the important files to it.
(In fact git add doesn't actually add anything itself; it just tells Git to add the file on the next git commit).
Finally git commit with the options shown will actually put the latest version of these files in my new local
repository.

To push this local repository to git.sugarlabs.org we use the commands from the web page:

git remote add origin \

Create A New Project 56

http://git.sugarlabs.org
http://git.sugarlabs.org

gitorious@git.sugarlabs.org:\
myo-sugar-activities-examples/mainline.git
git push origin master
Counting objects: 17, done.
Compressing objects: 100% (14/14), done.
Writing objects: 100% (15/15), 7.51 KiB, done.
Total 15 (delta 3), reused 0 (delta 0)
To gitorious@git.sugarlabs.org:myo-sugar-activities-examples/
mainline.git
 2cb3a1e..700789d master -> master
=> Syncing Gitorious...
Heads up: head of changed to
700789d3333a7257999d0a69bdcafb840e6adc09 on master
Notify cia.vc of 727bfe819d5b7b70f4f2b31d02f5562709284ac4 on
myo-sugar-activities-examples
Notify cia.vc of 700789d3333a7257999d0a69bdcafb840e6adc09 on
myo-sugar-activities-examples
[OK]
rm *
rm activity -rf
rm .git -rf
cd ~
rm Activity/ReadEtextsII
mkdir olpc
cd olpc
mkdir bookexamples
cd bookexamples
git clone \
git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git
Initialized empty Git repository in
/home/jim/olpc/bookexamples/mainline/.git/
remote: Counting objects: 18, done.
remote: Compressing objects: 100% (16/16), done.
remote: Total 18 (delta 3), reused 0 (delta 0)
Receiving objects: 100% (18/18), 8.53 KiB, done.
Resolving deltas: 100% (3/3), done.

The lines in bold are the commands to enter, and everything else is messages that Git sends to the console.
I've split some of the longer Git commands with the backslash (\) to make them fit better on the printed page,
and wrapped some output lines that would normally print on one line for the same reason. It probably isn't
clear what we're doing here and why, so let's take it step by step:

The first command git remote add origin tells the remote Git repository that we are going to send it
stuff from our local repository.

•

The second command git push origin master actually sends your local Git repository to the remote
one and its contents will be copied in. When you enter this command you will be asked to enter the
SSH pass phrase you created in the last section. GNOME will remember this phrase for you and enter
it for every Git command afterwards so you don't need to. It will keep doing this until you log out or
turn off the computer.

•

The next step is to delete our existing files and our local Git repository (which is contained in the
hidden directory .git). The rm .git -rf means "Delete the directory .git and everything in it". rm is a
Unix command, not part of Git. If you like you can delete your existing files after you create the
cloned repository in the next step. Note the command rm Activity/ReadEtextsII, which deletes the
symbolic link to our old project that we created by running ./setup.py dev. We'll need to go to our
new cloned project directory and run that again before we can test our Activity again.

•

Now we do the git clone command from the web page. This takes the remote Git repository we just
added our MANIFEST file to and makes a new local repository in directory
/yourhome/olpc/bookexamples/mainline.

•

Create A New Project 57

Finally we have a local repository we can use. Well, not quite. We can commit our code to it but we cannot
push anything back to the remote repository because our local repository isn't configured correctly yet.

What we need to do is edit the file config in directory .git in /yourhome/olpc/bookexamples/mainline. We
can use gedit to do that. We need to change the url= entry to point to the Push url shown on the mainline
web page. When we're done our config file should look like this:

[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = gitorious@git.sugarlabs.org:
myo-sugar-activities-examples/mainline.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master

The line in bold is the only one that gets changed. It is split here to make it fit on the printed page. In your
own files it should all be one line with no spaces between the colon(:) that ends the first line and the beginning
of the second line.

From now on anyone who wants to work on our project can get a local copy of the Git repository by doing
this from within the directory where he wants the repository to go:

git clone git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git

He'll have to change his .git/config file just like we did, then he'll be ready to go.

Everyday Use Of Git

While getting the repositories set up to begin with is a chore, daily use is not. There are only a few commands
you'll need to work with. When we left off we had a repository in /yourhome/olpc/bookexamples/mainline
with our files in it. We will need to add any new files we create too.

We use the git add command to tell Git that we want to use Git to store a particular file. This doesn't actually
store anything, it just tells Git our intentions. The format of the command is simply:

git add file_or_directory_name

There are files we don't want to add to Git, to begin with those files that end in .pyc. If we never do a git add
on them they'll never get added, but Git will constantly ask us why we aren't adding them. Fortunately there
is a way to tell Git that we really, really don't want to add those files. We need to create a file named
.gitignore using gedit and put in entries like this:

*.pyc
*.e4p
*.zip
.eric4project/
.ropeproject/

These entries will also ignore project files used by Eric and zip files containing ebooks, Once we have this
file created in the mainline directory we can add it to the repository:

git add .gitignore

Everyday Use Of Git 58

git commit -a -m "Add .gitignore file"

From now on Git will no longer ask us to add .pyc or other unwanted files that match our patterns. If there are
other files we don't want in the repository we can add them to .gitignore either as full file names or directory
names or as patterns like *.pyc.

 In addition to adding files to Git we can remove them too:

git rm filename

Note that this just tells Git that from now on it will not be keeping track of a given filename, and that will take
effect at the next commit. Old versions of the file are still in the repository.

If you want to see what changes will be applied at the next commit run this:

git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will
be committed)
#
modified: ReadEtextsActivity.py
#
no changes added to commit (use "git add" and/or
"git commit -a")

Finally, to put your latest changes in the repository use this:

git commit -a -m "Change use of instance directory to tmp"
Created commit a687b27: Change use of instance
directory to tmp
 1 files changed, 2 insertions(+), 2 deletions(-)

If you leave off the -m an editor will open up and you can type in a comment, then save and exit.
Unfortunately by default the editor is vi, an old text mode editor that is not friendly like gedit.

When we have all our changes done we can send them to the central repository using git push:

git push
Counting objects: 5, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 322 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
To gitorious@git.sugarlabs.org:
myo-sugar-activities-examples/mainline.git
 700789d..a687b27 master -> master
=> Syncing Gitorious...
Heads up: head of changed to
a687b27e2f034e5a17d2ca2fe9f2787c7f633e64 on master
Notify cia.vc of a687b27e2f034e5a17d2ca2fe9f2787c7f633e64
on myo-sugar-activities-examples
[OK]

We can get the latest changes from other developers by doing git pull:

git pull
remote: Counting objects: 17, done.
remote: Compressing objects: 100% (14/14), done.
remote: Total 15 (delta 3), reused 0 (delta 0)
Unpacking objects: 100% (15/15), done.

Everyday Use Of Git 59

From gitorious@git.sugarlabs.org:
myo-sugar-activities-examples/mainline
 2cb3a1e..700789d master -> origin/master
Updating 2cb3a1e..700789d
Fast forward
 .gitignore | 6 +
 MANIFEST | 244 +--------------------------

 ReadEtexts.py | 182 +++++++++++++++++++++++++++
 ReadEtextsActivity.py | 182 +++++++++++++++++++++++++++
 ReadEtextsActivity2.py | 311 +++++++++++++++++++++++++++
+++++++++++++++++++
 activity/activity.info | 9 ++
 activity/read-etexts.svg | 71 +++++++++++
 setup.py | 21 +++
 toolbar.py | 136 ++++++++++++++++++++
 9 files changed, 921 insertions(+), 241 deletions(-)
 create mode 100644 .gitignore
 create mode 100755 ReadEtexts.py
 create mode 100644 ReadEtextsActivity.py
 create mode 100644 ReadEtextsActivity2.py
 create mode 100644 activity/activity.info
 create mode 100644 activity/read-etexts.svg
 create mode 100755 setup.py
 create mode 100644 toolbar.py

Everyday Use Of Git 60

Going International With Pootle

Introduction

The goal of Sugar Labs and One Laptop Per Child is to educate all the children of the world, and we can't do
that with Activities that are only available in one language. It is equally true that making separate versions of
each Activity for every language is not going to work, and expecting Activity developers to be fluent in many
languages is not realistic either. We need a way for Activity developers to be able to concentrate on creating
Activities and for those who can translate to just do that. Fortunately, this is possible and the way it's done is
by using gettext.

Getting Text With gettext

You should remember that our latest code example made use of an odd import:

from gettext import gettext as _

The "_()" function was used in statements like this:

 self.back.set_tooltip(_('Back'))

At the time I explained that this odd looking function was used to translate the word "Back" into other
languages, so that when someone looks at the Back button's tool tip he'll see the text in his own language. I
also said that if it was not possible to translate this text the user would see the word "Back" untranslated. In
this chapter we'll learn more about how this works and what we have to do to support the volunteers who
translate these text strings into other languages.

The first thing you need to learn is how to properly format the text strings to be translated. This is an issue
when the text strings are actual sentences containing information. For example, you might write such a
message this way:

 message = _("User ") + username + \
 _(" has joined the chat room.")

This would work, but you've made things difficult for the translator. He has two separate strings to translate
and no clue that they belong together. It is much better to do this:

 message = _("User %s has joined the chat room.") % \
 username

If you know both statements give the same resulting string then you can easily see why a translator would
prefer the second one. Use this technique whenever you need a message that has some information inserted
into it. When you use it, try and limit yourself to only one format code (the %s) per string. If you use more
than one it can cause problems for the translator.

Going To Pot

Assuming that every string of text a user might be shown by our Activity is passed through "_()" the next step
is to generate a pot file. You can do this by running setup.py with a special option:

./setup.py genpot

Going International With Pootle 61

This creates a directory called po and puts a file ActivityName.pot in that directory. In the case of our
example project ActivityName is ReadEtextsII. This is the contents of that file:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the
PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2010-01-06 18:31-0600\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: activity/activity.info:2
msgid "Read ETexts II"
msgstr ""

#: toolbar.py:34
msgid "Back"
msgstr ""

#: toolbar.py:40
msgid "Forward"
msgstr ""

#: toolbar.py:115
msgid "Zoom out"
msgstr ""

#: toolbar.py:120
msgid "Zoom in"
msgstr ""

#: toolbar.py:130
msgid "Fullscreen"
msgstr ""

#: ReadEtextsActivity2.py:34
msgid "Edit"
msgstr ""

#: ReadEtextsActivity2.py:38
msgid "Read"
msgstr ""

#: ReadEtextsActivity2.py:46
msgid "View"
msgstr ""

This file contains an entry for every text string in our Activity (as msgid) and a place to put a translation of
that string (msgstr). Copies of this file will be made by the Pootle server for every language desired, and the
msgstr entries will be filled in by volunteer translators.

Going To Pot 62

Going To Pootle

Before any of that can happen we need to get our POT file into Pootle. The first thing we need to do is get the
new directory into our Git repository and push it out to Gitorious. You should be familiar with the needed
commands by now:

git add po
git commit -a -m "Add POT file"
git push

Next we need to give the user "pootle" commit authority to our Git project. Go to git.sugarlabs.org, sign in,
and find your Project page and click on the mainline link. You should see this on the page that takes you to:

Click on the Add committer link and type in the name pootle in the form that takes you to. When you come
back to this page pootle will be listed under Committers.

Your next step is to go to web site http://bugs.sugarlabs.org and register for a user id. When you get that
open up a ticket something like this:

Going To Pootle 63

http://git.sugarlabs.org
http://bugs.sugarlabs.org

The Component entry localization should be used, along with Type task.

Believe it or not, this is all you need to do to get your Activity set up to be translated.

Pay No Attention To That Man Behind The Curtain

After this you'll need to do a few things to get translations from Pootle into your Activity.

When you add text strings (labels, error messages, etc.) to your Activity always use the _() function
with them so they can be translated.

•

After adding new strings always run ./setup.py genpot to recreate the POT file.•
After that commit and push your changes to Gitorious.•
Every so often, and especially before releasing a new version, do a git pull. If there are any
localization files added to Gitorious this will bring them to you.

•

After getting a bunch of new files run ./setup.py fix_manifest to get the new files included in your
MANIFEST file. Afterwards edit the MANIFEST with gedit to remove any unwanted entries
(which will be Eric project files, etc.).

•

Localization with Pootle will create a large number of files in your project, some in the po directory and
others in a new directory called locale. As long as these are listed in the MANIFEST they will be included in
the .xo file that you will use to distribute your Activity.

C'est Magnifique!

Here is a screen shot of the French language version of Read Etexts reading Jules Verne's novel Le tour du
monde en quatre-vingts jours:

Pay No Attention To That Man Behind The Curtain 64

There is reason to believe that the book is in French too.

C'est Magnifique! 65

Distribute Your Activity

Choose A License

Before you give your Activity to anyone you need to choose a license that it will be distributed under. Buying
software is like buying a book. There are certain rights you have with a book and others you don't have. If
you buy a copy of The DaVinci Code you have the right to read it, to loan it out, to sell it to a used bookstore,
or to burn it. You do not have the right to make copies of it or to make a movie out of it. Software is the
same way, but often worse. Those long license agreements we routinely accept by clicking a button might not
allow you to sell the software when you're done with it, or even give it away. If you sell your computer you
may find that the software you bought is only good for that computer, and only while you are the owner of the
computer. (You can get good deals on reconditioned computers with no operating system installed for that
very reason).

If you are in the business of selling software you might have to hire a lawyer to draw up a license agreement,
but if you're giving away software there are several standard licenses you can choose from for free. The most
popular by far is called the General Public License, or GPL. Like the licenses Microsoft uses it allows the
people who get your program to do some things with it but not others. What makes it interesting is not what it
allows them to do (which is pretty much anything they like) but what it forbids them to do.

If someone distributes a program licensed under the GPL they are also required to make the source code of the
program available to anyone who wants it. That person may do as he likes with the code, with one important
restriction: if he distributes a program based on that code he must also license that code using the GPL. This
makes it impossible for someone to take a GPL licensed work, improve it, and sell it to someone without
giving him the source code to the new version.

While the GPL is not the only license available for Activities to be distributed on
http://activities.sugarlabs.org all the licenses require that anyone getting the Activity also gets the complete
source code for it. You've already taken care of that requirement by putting your source code in Gitorious. If
you used any code from an existing Activity licensed with the GPL you must license your own code the same
way. If you used a significant amount of code from this book (which is also GPL licensed) you may be
required to use the GPL too.

Is licensing something you should worry about? Not really. The only reason you'd want to use a license other
than the GPL is if you wanted to sell your Activity instead of give it away. Consider what you'd have to do to
make that possible:

You'd have to use some language other than Python so you could give someone the program without
giving them the source code.

•

You would have to have your own source code repository not available to the general public and
make arrangements to have the data backed up regularly.

•

You would have to have your own website to distribute the Activity. The website would have to be
set up to accept payments somehow.

•

You would have to advertise this website somehow or nobody would know your Activity existed.•
You would have to have a lawyer draw up a license for your Activity.•
You would have to come up with some mechanism to keep your customers from giving away copies
of your Activity.

•

You would have to create an Activity so astoundingly clever that nobody else could make something
similar and give it away.

•

You would have to deal with the fact that your "customers" would be children with no money or
credit cards.

•

Distribute Your Activity 66

http://activities.sugarlabs.org

In summary, activities.sugarlabs.org is not the iPhone App Store. It is a place where programmers share and
build upon each other's work and give the results to children for free. The GPL encourages that to happen,
and I recommend that you choose that for your license.

Add License Comments To Your Python Code

At the top of each Python source file in your project (except setup.py, which is already commented) put
comments like this:

filename Program description
#
Copyright (C) 2010 Your Name Here
#
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
#
You should have received a copy of the GNU General
Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin
St, Fifth Floor, Boston, MA 02110-1301 USA

If the code is based on someone else's code you should mention that as a courtesy.

Create An .xo File

Make certain that activity.info has the version number you want to give your Activity (currently it must be a
positive integer) and run this command:

./setup.py dist_xo

This will create a dist directory if one does not exist and put a file named something like ReadETextsII-1.xo
in it. The "1" indicates version 1 of the Activity.

If you did everything right this .xo file should be ready to distribute. You can copy it to a thumb drive and
install it on an XO laptop or onto another thumb drive running Sugar on a Stick. You probably should do that
before distributing it any further. I like to live with new versions of my Activities for a week or so before
putting them on activities.sugarlabs.org.

Now would be a good time to add dist to your .gitignore file, then commit it and push it to Gitorious. You
don't want to have copies of your .xo files in Git. Another good thing to do at this point would be to tag your
Git repository with the version number so you can identify which code goes with which version.

git tag -m "Release 1" v1 HEAD
git push --tags

Choose A License 67

http://activities.sugarlabs.org
http://activities.sugarlabs.org

Add Your Activity To ASLO

When you're ready to post the .xo file on ASLO you'll create an account as you did with the other websites.
When you've logged in there you'll see a Tools link in the upper right corner of the page. Click on that and
you'll see a popup menu with an option for Developer Hub, which you should click on. That will take you to
the pages where you can add new Activities. The first thing it asks for when setting up a new Activity is what
license you will use. After that you should have no problem getting your Activity set up.

You will need to create an Activity icon as a .gif file and create screen shots of your Activity in action. You
can do both of these things with The GIMP (GNU Image Manipulation Program). For the icon all you need to
do is open the .svg file with The GIMP and Save As a .gif file.

For the screen shots use sugar-emulator to display your Activity in action, then use the Screenshot option
from the Create submenu of the File menu with these options:

This tells GIMP to wait 10 seconds, then take a screenshot of the window you click on with the mouse. You'll
know that the 10 seconds are up because the mouse pointer will change shape to a plus (+) sign. You also tell
it not to include the window decoration (which means the window title bar and border). Since windows in
Sugar do not have decorations eliminating the decorations used by sugar-emulator will give you a screenshot
that looks exactly like a Sugar Activity in action.

Every Activity needs one screenshot, but you can have more if you like. Screenshots help sell the Activity
and instruct those who will use it on what the Activity can do. Unfortunately, ASLO cannot display pictures
in a predictable sequence, so it is not suited to displaying steps to perform.

Another thing you'll need to provide is a home page for your Activity. The one for Read Etexts is here:

http://wiki.sugarlabs.org/go/Activities/Read_Etexts

Yes, one more website to get an account for. Once you do you can specify a link with
/go/Activities/some_name and when you click on that link the Wiki will create a page for you. The software
used for the Wiki is MediaWiki, the same as used for Wikipedia. Your page does not need to be as elaborate
as mine is, but you definitely should provide a link to your source code in Gitorious.

Add Your Activity To ASLO 68

http://wiki.sugarlabs.org/go/Activities/Read_Etexts

Debugging Sugar Activities

Introduction

No matter how careful you are it is reasonably likely that your Activity will not work perfectly the first time
you try it out. Debugging a Sugar Activity is a bit different than debugging a standalone program. When you
test a standalone program you just run the program itself. If there are syntax errors in the code you'll see the
error messages on the console right away, and if you're running under the Eric IDE the offending line of code
will be selected in the editor so you can correct it and keep going.

With Sugar it's a bit different. It's the Sugar environment, not Eric, that runs your program. If there are
syntax errors in your code you won't see them right away. Instead, the blinking Activity icon you see when
your Activity starts up will just keep on blinking for several minutes and then will just go away, and your
Activity won't start up. The only way you'll see the error that caused the problem will be to use the Log
Activity. If your program has no syntax errors but does have logic errors you won't be able to step through
your code with a debugger to find them. Instead, you'll need to use some kind of logging to trace through
what's happening in your code, and again use the Log Activity to view the trace messages. Now would be a
good time to repeat some advice I gave before:

Make A Standalone Version Of Your Program First

Whatever your Activity does, it's a good bet that 80% of it could be done by a standalone program which
would be much less tedious to debug. If you can think of a way to make your Activity runnable as either an
Activity or a standalone Python program then by all means do it.

Use PyLint, PyChecker, or PyFlakes

One of the advantages of a compiled language like C over an interpreted language like Python is that the
compiler does a complete syntax check of the code before converting it to machine language. If there are
syntax errors the compiler gives you informative error messages and stops the compile. There is a utility call
lint which C programmers can use to do even more thorough checks than the compiler would do and find
questionable things going on in the code.

Python does not have a compiler but it does have several lint-like utilities you can run on your code before
you test it. These utilities are pyflakes, pychecker, and pylint. Any Linux distribution should have all three
available.

PyFlakes

Here is an example of using PyFlakes:

pyflakes minichat.py
minichat.py:25: 'COLOR_BUTTON_GREY' imported but unused
minichat.py:28: 'XoColor' imported but unused
minichat.py:29: 'Palette' imported but unused
minichat.py:29: 'CanvasInvoker' imported but unused

PyFlakes seems to do the least checking of the three, but it does find errors like these above that a human eye
would miss.

Debugging Sugar Activities 69

PyChecker

Here is PyChecker in action:

pychecker ReadEtextsActivity.py
Processing ReadEtextsActivity...
/usr/lib/python2.5/site-packages/dbus/_dbus.py:251:
DeprecationWarning: The dbus_bindings module is not public
API and will go away soon.

Most uses of dbus_bindings are applications catching
the exception dbus.dbus_bindings.DBusException.
You should use dbus.DBusException instead (this is
compatible with all dbus-python versions since 0.40.2).

If you need additional public API, please contact
the maintainers via <dbus@lists.freedesktop.org>.

 import dbus.dbus_bindings as m

Warnings...

/usr/lib/python2.5/site-packages/sugar/activity/activity.py:847:
Parameter (ps) not used
/usr/lib/python2.5/site-packages/sugar/activity/activity.py:992:
Parameter (event) not used
/usr/lib/python2.5/site-packages/sugar/activity/activity.py:992:
Parameter (widget) not used
/usr/lib/python2.5/site-packages/sugar/activity/activity.py:996:
Parameter (widget) not used

/usr/lib/python2.5/site-packages/sugar/graphics/window.py:157:
No class attribute (_alert) found
/usr/lib/python2.5/site-packages/sugar/graphics/window.py:164:
Parameter (window) not used
/usr/lib/python2.5/site-packages/sugar/graphics/window.py:188:
Parameter (widget) not used
/usr/lib/python2.5/site-packages/sugar/graphics/window.py:200:
Parameter (event) not used
/usr/lib/python2.5/site-packages/sugar/graphics/window.py:200:
Parameter (widget) not used

ReadEtextsActivity.py:62: Parameter (widget) not used

4 errors suppressed, use -#/--limit to increase the number
of errors displayed

PyChecker not only checks your code, it checks the code you import, including Sugar code.

PyLint

Here is PyLint, the most thorough of the three:

pylint ReadEtextsActivity.py
No config file found, using default configuration
************* Module ReadEtextsActivity
C:177: Line too long (96/80)
C: 1: Missing docstring
C: 27: Operator not preceded by a space
page=0
 ^
C: 27: Invalid name "page" (should match
(([A-Z_][A-Z0-9_]*)|(__.*__))$)
C: 30:ReadEtextsActivity: Missing docstring

PyChecker 70

C:174:ReadEtextsActivity.read_file: Invalid name "zf" (should
match [a-z_][a-z0-9_]{2,30}$)
W: 30:ReadEtextsActivity: Method 'write_file' is abstract
in class 'Activity' but is not overridden
R: 30:ReadEtextsActivity: Too many ancestors (12/7)
W: 33:ReadEtextsActivity.__init__: Using the global statement
R: 62:ReadEtextsActivity.keypress_cb:
Too many return statements (7/6)
C: 88:ReadEtextsActivity.page_previous: Missing docstring
W: 89:ReadEtextsActivity.page_previous:
Using the global statement
C: 90:ReadEtextsActivity.page_previous:
Operator not preceded by a space
 page=page-1
 ^
C: 91:ReadEtextsActivity.page_previous:
Operator not preceded by a space
 if page < 0: page=0
 ^
C: 91:ReadEtextsActivity.page_previous: More than one
statement on a single line
C: 96:ReadEtextsActivity.page_next: Missing docstring
W: 97:ReadEtextsActivity.page_next: Using the global
statement
C: 98:ReadEtextsActivity.page_next: Operator not preceded
by a space
 page=page+1
 ^
C: 99:ReadEtextsActivity.page_next: More than one
statement on a single line
C:104:ReadEtextsActivity.font_decrease: Missing docstring
C:112:ReadEtextsActivity.font_increase: Missing docstring
C:118:ReadEtextsActivity.scroll_down: Missing docstring
C:130:ReadEtextsActivity.scroll_up: Missing docstring
C:142:ReadEtextsActivity.show_page: Missing docstring
W:143:ReadEtextsActivity.show_page: Using global for
'PAGE_SIZE' but no assigment is done
W:143:ReadEtextsActivity.show_page: Using global for
'current_word' but no assigment is done
W:157:ReadEtextsActivity.save_extracted_file: Redefining
name 'zipfile' from outer scope (line 21)
C:163:ReadEtextsActivity.save_extracted_file: Invalid
name "f" (should match [a-z_][a-z0-9_]{2,30}$)
W:171:ReadEtextsActivity.read_file: Using global
for 'PAGE_SIZE' but no assigment is done
C:177:ReadEtextsActivity.read_file: Invalid name
"currentFileName" (should match [a-z_][a-z0-9_]{2,30}$)
C:179:ReadEtextsActivity.read_file: Invalid name
"currentFileName" (should match [a-z_][a-z0-9_]{2,30}$)
C:197:ReadEtextsActivity.make_new_filename: Missing
docstring
R:197:ReadEtextsActivity.make_new_filename: Method could be
a function
R: 30:ReadEtextsActivity: Too many public methods (350/20)
W:174:ReadEtextsActivity.read_file: Attribute
'zf' defined outside __init__
W:181:ReadEtextsActivity.read_file: Attribute
'etext_file' defined outside __init__
W:175:ReadEtextsActivity.read_file: Attribute
'book_files' defined outside __init__
W:182:ReadEtextsActivity.read_file: Attribute
'page_index' defined outside __init__

... A bunch of tables appear here ...

Global evaluation

PyLint 71

Your code has been rated at 7.52/10 (previous run: 7.52/10)

PyLint is the toughest on your code and your ego. It not only tells you about syntax errors, it tells you
everything someone might find fault with in your code. This includes style issues that won't affect how your
code runs but will affect how readable it is to other programmers.

The Log Activity

When you start testing your Activities the Log Activity will be like your second home. It displays a list of log
files in the left pane and when you select one it will display the contents of the file in the right pane. Every
time you run your Activity a new log file is created for it, so you can compare the log you got this time with
what you got on previous runs. The Edit toolbar is especially useful. It contains a button to show the log file
with lines wrapped (which is not turned on by default but probably should be). It has another button to copy
selections from the log to the clipboard, which will be handy if you want to show log messages to other
developers.

The Tools toolbar has a button to delete log files. I've never found a reason to use it. Log files go away on
their own when you shut down sugar-emulator.

Here is what the Log Activity looks like showing a syntax error in your code:

The Log Activity 72

Logging

Without a doubt the oldest debugging technique there is would be the simple print statement. If you have a
running program that misbehaves because of logic errors and you can't step through the code in a debugger to
figure out what's happening you might print statements in your code. For instance, if you aren't sure that a
method is ever getting executed you might put a statement like this as the first line of the method:

 def my_method():
print 'my_method() begins'

You can include data in your print statements too. Suppose you need to know how many times a loop is run.
You could do this:

 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + unicode(line,
 'iso-8859-1')
 linecount = linecount + 1

print 'linecount=', linecount

The output of these print statements can be seen in the Log Activity. When you're finished debugging your
program you would remove these statements.

An old programming book I read once made the case for leaving the statements in the finished program. The
authors felt that using these statements for debugging and them removing them is a bit like wearing a
parachute when the plane is on the ground and taking it off when it's airborne. If the program is out in the
world and has problems you might well wish you had those statements in the code so you could help the user
and yourself figure out what's going on. On the other hand, print statements aren't free. They do take time to
run and they fill up the log files with junk. What we need are print statements that you can turn on an off.

The way you can do this is with Python Standard Logging. In the form used by most Activities it looks like
this:

 self._logger = logging.getLogger(
 'read-etexts-activity')

Logging 73

These statements would go in the __init__() method of your Activity. Every time you want to do a print()
statement you would do this instead:

 def _shared_cb(self, activity):
self._logger.debug('My activity was shared')

 self.initiating = True
 self._sharing_setup()

self._logger.debug(
 'This is my activity: making a tube...')
 id = self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 OfferDBusTube(SERVICE, {})

 def _sharing_setup(self):
 if self._shared_activity is None:

self._logger.error(
 'Failed to share or join activity')
 return

Notice that there are two kinds of logging going on here: debug and error. These are error levels. Every
statement has one, and they control which log statements are run and which are ignored. There are several
levels of error logging, from lowest severity to highest:

 self._logger.debug("debug message")
 self._logger.info("info message")
 self._logger.warn("warn message")
 self._logger.error("error message")
 self._logger.critical("critical message")

When you set the error level in your program to one of these values you get messages with that level and
higher. You can set the level in your program code like this:

 self._logger.setLevel(logging.DEBUG)

You can also set the logging level outside your program code using an environment variable. For instance,
in Sugar .82 and lower you can start sugar-emulator like this:

SUGAR_LOGGER_LEVEL=debug sugar-emulator

You can do the same thing with .84 and later, but there is a more convenient way. Edit the file
~/.sugar/debug and uncomment the line that sets the SUGAR_LOGGER_LEVEL. Whatever value you have
for SUGAR_LOGGER_LEVEL in ~/.sugar/debug will override the one set by the environment variable, so
either change the setting in the file or use the environment variable, but don't do both.

The Analyze Activity

Another Activity you may find yourself using at some point is Analyze. This is more likely to be used to
debug Sugar itself than to debug your Activity. If, for instance, your collaboration test environment doesn't
seem to be working this Activity might help you or someone else figure out why.

I don't have a lot to say about this Activity here, but you should be aware that it exists.

The Analyze Activity 74

The Analyze Activity 75

Making Shared Activities

Introduction

One of the distinctive features of Sugar is how many Activities support being used by more than one person at
a time. More and more computers are being used as a communications medium. The latest computer games
don't just pit the player against the computer; they create a world where players compete against each other.
Websites like Facebook are increasingly popular because they allow people to interact with each other and
even play games. It is only natural that educational software should support these kinds of interactions.

I have a niece that is an enthusiastic member of the Club Penguin website created by Disney. When I gave
her Sugar on a Stick Blueberry as an extra Christmas gift I demonstrated the Neighborhood view and told her
that Sugar would make her whole computer like Club Penguin. She thought that was a pretty cool idea. I felt
pretty cool saying it.

Running Sugar As More Than One User

Before you write any piece of software you need to give some thought to how you will test it. In the case of a
shared Activity you might think you'd need more than one computer available to do testing, but those who
designed Sugar did give some thought to testing shared Activities and gave us ways to test them using only
one computer. These methods have been evolving so there are slight variations in how you test depending on
the version of Sugar you're using. The first thing you have to know is how to run multiple copies of Sugar as
different users.

Fedora 10 (Sugar .82)

In Sugar .82 there is a handy way to run multiple copies of sugar-emulator and have each copy be a different
user, without having to be logged into your Linux box as more than one user. On the command line for each
additional user you want add a SUGAR_PROFILE environment variable like this:

SUGAR_PROFILE=austen sugar-emulator

When you do this sugar-emulator will create a directory named austen under ~/.sugar to store profile
information, etc. You will be prompted to enter a name and select colors for your icon. Every time you
launch using the SUGAR_PROFILE of austen you will be this user. If you launch with no
SUGAR_PROFILE you will be the regular user you set up before.

Fedora 11 (Sugar .84)

As handy as using SUGAR_PROFILE is the developers of Sugar decided it had limitations so with version
.84 and later it no longer works. With .84 and later you need to create a second Linux user and run your
sugar-emulators as two separate Linux users. In the GNOME environment there is an option Users and
Groups in the Administration submenu of the System menu which will enable you to set up a second user.
Before it comes up it will prompt you for the administrative password you created when you first set up
Linux.

Creating the second user is simple enough, but how do you go about being logged in as two different users at
the same time? It's actually pretty simple. You need to open a terminal window and type this:

ssh -XY jausten@localhost

where "jausten" is the userid of the second user. You will be asked to verify that the computer at "localhost"

Making Shared Activities 76

should be trusted. Since "localhost" just means that you are using the network to connect to another account
on the same computer it is safe to answer "yes". Then you will be prompted to enter her password, and from
then on everything you do in that terminal window will be done as her. You can launch sugar-emulator from
that terminal and the first time you do it will prompt you for a name and icon colors.

sugar-jhbuild

With sugar-jhbuild (the latest version of Sugar) things are a bit different again. You will use the method of
logging in as multiple Linux users like you did in .84, but you won't get prompted for a name. Instead the
name associated with the userid you're running under will be the name you'll use in Sugar. You won't be able
to change it, but you will be able to choose your icon colors as before.

You will need a separate install of sugar-jhbuild for each user. These additional installs will go quickly
because you installed all the dependencies the first time.

Connecting To Other Users

Sugar uses software called Telepathy that implements an instant messaging protocol called XMPP (Extended
Messaging and Presence Protocol). This protocol used to be called Jabber. In essence Telepathy lets you
put an instant messaging client in your Activity. You can use this to send messages from user to user, execute
methods remotely, and do file transfers.

There are actually two ways that Sugar users can join together in a network:

Salut

If two computer users are connected to the same segment of a network they should be able to find each other
and share Activities. If you have a home network where everyone uses the same router you can share with
others on that network. This is sometimes called Link-Local XMPP. The Telepathy software that makes this
possible is called Salut.

The XO laptop has special hardware and software to support Mesh Networking, where XO laptops that are
near each other can automatically start networking with each other without needing a router. As far as Sugar
is concerned, it doesn't matter what kind of network you have. Wired or wireless, Mesh or not, they all work.

Jabber Server

The other way to connect to other users is by going through a Jabber Server. The advantage of using a Jabber
server is you can contact and share Activities with people outside your own network. These people might
even be on the other side of the world. Jabber allows Activities in different networks to connect when both
networks are protected by firewalls. The part of Telepathy that works with a Jabber server is called Gabble.

Generally you should use Salut for testing if at all possible. This simplifies testing and doesn't use up
resources on a Jabber server.

It does not matter if your Activity connects to others using Gabble or Salut. In fact, the Activity has no idea
which it is using. Those details are hidden from the Activity by Telepathy. Any Activity that works with
Salut will work with Gabble and vice versa.

To set up sugar-emulator to use Salut go to the Sugar control panel:

Fedora 11 (Sugar .84) 77

In Sugar .82 this menu option is Control Panel. In later versions it is My Settings.

Click on the Network icon.

Jabber Server 78

The Server field in this screen should be empty to use Salut. You can use the backspace key to remove any
entry there.

You will need to follow these steps for every Sugar user that will take part in your test.

If for some reason you wish to test your Activity using a Jabber server the OLPC Wiki maintains a list of
publicly available servers at http://wiki.laptop.org/go/Community_Jabber_Servers.

Once you have either Salut or a Jabber server set up in both instances of Sugar that you are running you
should look at the Neighborhood view of both to see if they can detect each other, and perhaps try out the
Chat Activity between the two. If you have that working you're ready to try programming a shared Activity.

The MiniChat Activity

Just as we took the Read Etexts Activity and stripped it down to the basics we're going to do the same to the
Chat Activity to create a new Activity called MiniChat. The real Chat Activity has a number of features that
we don't need to demonstrate shared Activity messaging:

It has the ability to load its source code into Pippy for viewing. This was a feature that all Activities
on the XO were supposed to have, but Chat is one of the few that implemented it. Personally, if I
want to see an Activity's code I prefer to go to git.sugarlabs.org where I can see old versions of the
code as well as the latest.

•

Chat can connect one to one with a conventional XMPP client. This may be useful for Chat but
would not be needed or desirable for most shared Activities.

•

If you include a URL in a Chat message the user interface enables you to click on the URL make a
Journal entry for that URL. You can then use the Journal to open it with the Browse Activity. (This
is necessary because activities cannot launch each other). Pretty cool, but not needed to demonstrate
how to make a shared Activity.

•

The chat session is stored in the Journal. When you resume a Chat entry from the Journal it restores
the messages from your previous chat session into the user interface. We already know how to save
things to the Journal and restore things from the Journal, so MiniChat won't do this.

•

The MiniChat Activity 79

http://wiki.laptop.org/go/Community_Jabber_Servers
http://git.sugarlabs.org

The resulting code is about half as long as the original. I made a few other changes too:

The text entry field is above the chat messages, instead of below. This makes it easier to do partial
screenshots of the Activity in action.

•

I removed the new style toolbar and added an old style toolbar, so I could test it in Fedora 10 and 11
which don't support the new toolbars.

•

I took the class TextChannelWrapper and put it in its own file. I did this because the class looked
like it might be useful for other projects.

•

The code and all supporting files for MiniChat are in the MiniChat directory of the Git repository. You'll
need to run

./setup.py dev

on the project to make it ready to test. The activity.info looks like this:

[Activity]
name = Mini Chat
service_name = net.flossmanuals.MiniChat
icon = chat
exec = sugar-activity minichat.MiniChat
show_launcher = yes
activity_version = 1
license = GPLv2+

Here is the code for textchannel.py:

import logging

from telepathy.client import Connection, Channel
from telepathy.interfaces import (
 CHANNEL_INTERFACE, CHANNEL_INTERFACE_GROUP,
 CHANNEL_TYPE_TEXT, CONN_INTERFACE_ALIASING)
from telepathy.constants import (
 CHANNEL_GROUP_FLAG_CHANNEL_SPECIFIC_HANDLES,
 CHANNEL_TEXT_MESSAGE_TYPE_NORMAL)

class TextChannelWrapper(object):
 """Wrap a telepathy Text Channel to make
 usage simpler."""
 def __init__(self, text_chan, conn):
 """Connect to the text channel"""
 self._activity_cb = None
 self._activity_close_cb = None
 self._text_chan = text_chan
 self._conn = conn
 self._logger = logging.getLogger(
 'minichat-activity.TextChannelWrapper')
 self._signal_matches = []
 m = self._text_chan[CHANNEL_INTERFACE].\
 connect_to_signal(
 'Closed', self._closed_cb)
 self._signal_matches.append(m)

 def send(self, text):
 """Send text over the Telepathy text channel."""
 # XXX Implement CHANNEL_TEXT_MESSAGE_TYPE_ACTION
 if self._text_chan is not None:
 self._text_chan[CHANNEL_TYPE_TEXT].Send(
 CHANNEL_TEXT_MESSAGE_TYPE_NORMAL, text)

 def close(self):
 """Close the text channel."""

The MiniChat Activity 80

 self._logger.debug('Closing text channel')
 try:
 self._text_chan[CHANNEL_INTERFACE].Close()
 except:
 self._logger.debug('Channel disappeared!')
 self._closed_cb()

 def _closed_cb(self):
 """Clean up text channel."""
 self._logger.debug('Text channel closed.')
 for match in self._signal_matches:
 match.remove()
 self._signal_matches = []
 self._text_chan = None
 if self._activity_close_cb is not None:
 self._activity_close_cb()

 def set_received_callback(self, callback):
 """Connect the function callback to the signal.

 callback -- callback function taking buddy
 and text args
 """
 if self._text_chan is None:
 return
 self._activity_cb = callback
 m = self._text_chan[CHANNEL_TYPE_TEXT].\
 connect_to_signal(
 'Received', self._received_cb)
 self._signal_matches.append(m)

 def handle_pending_messages(self):
 """Get pending messages and show them as
 received."""
 for id, timestamp, sender, type, flags, text \
 in self._text_chan[
 CHANNEL_TYPE_TEXT].ListPendingMessages(
 False):
 self._received_cb(id, timestamp, sender,
 type, flags, text)

 def _received_cb(self, id, timestamp, sender,
 type, flags, text):
 """Handle received text from the text channel.

 Converts sender to a Buddy.
 Calls self._activity_cb which is a callback
 to the activity.
 """
 if self._activity_cb:
 buddy = self._get_buddy(sender)
 self._activity_cb(buddy, text)
 self._text_chan[
 CHANNEL_TYPE_TEXT].
 AcknowledgePendingMessages([id])
 else:
 self._logger.debug(
 'Throwing received message on the floor'
 ' since there is no callback connected. See '
 'set_received_callback')

 def set_closed_callback(self, callback):
 """Connect a callback for when the text channel
 is closed.

 callback -- callback function taking no args

The MiniChat Activity 81

 """
 self._activity_close_cb = callback

 def _get_buddy(self, cs_handle):
 """Get a Buddy from a (possibly channel-specific)
 handle."""
 # XXX This will be made redundant once Presence
 # Service provides buddy resolution
 from sugar.presence import presenceservice
 # Get the Presence Service
 pservice = presenceservice.get_instance()
 # Get the Telepathy Connection
 tp_name, tp_path = \
 pservice.get_preferred_connection()
 conn = Connection(tp_name, tp_path)
 group = self._text_chan[CHANNEL_INTERFACE_GROUP]
 my_csh = group.GetSelfHandle()
 if my_csh == cs_handle:
 handle = conn.GetSelfHandle()
 elif group.GetGroupFlags() & \
 CHANNEL_GROUP_FLAG_CHANNEL_SPECIFIC_HANDLES:
 handle = group.GetHandleOwners([cs_handle])[0]
 else:
 handle = cs_handle

 # XXX: deal with failure to get the handle owner
 assert handle != 0

 return pservice.get_buddy_by_telepathy_handle(
 tp_name, tp_path, handle)

Here is the code for minichat.py:

from gettext import gettext as _
import hippo
import gtk
import pango
import logging
from sugar.activity.activity import (Activity,
 ActivityToolbox, SCOPE_PRIVATE)
from sugar.graphics.alert import NotifyAlert
from sugar.graphics.style import (Color, COLOR_BLACK,
 COLOR_WHITE, COLOR_BUTTON_GREY, FONT_BOLD,
 FONT_NORMAL)
from sugar.graphics.roundbox import CanvasRoundBox
from sugar.graphics.xocolor import XoColor
from sugar.graphics.palette import Palette, CanvasInvoker

from textchannel import TextChannelWrapper

logger = logging.getLogger('minichat-activity')

class MiniChat(Activity):
 def __init__(self, handle):
 Activity.__init__(self, handle)

 root = self.make_root()
 self.set_canvas(root)
 root.show_all()
 self.entry.grab_focus()

 toolbox = ActivityToolbox(self)
 activity_toolbar = toolbox.get_activity_toolbar()
 activity_toolbar.keep.props.visible = False
 self.set_toolbox(toolbox)
 toolbox.show()

The MiniChat Activity 82

 self.owner = self._pservice.get_owner()
 # Auto vs manual scrolling:
 self._scroll_auto = True
 self._scroll_value = 0.0
 # Track last message, to combine several
 # messages:
 self._last_msg = None
 self._last_msg_sender = None
 self.text_channel = None

 if self._shared_activity:
 # we are joining the activity
 self.connect('joined', self._joined_cb)
 if self.get_shared():
 # we have already joined
 self._joined_cb()
 else:
 # we are creating the activity
 if not self.metadata or self.metadata.get(
 'share-scope',
 SCOPE_PRIVATE) == SCOPE_PRIVATE:
 # if we are in private session
 self._alert(_('Off-line'),
 _('Share, or invite someone.'))
 self.connect('shared', self._shared_cb)

 def _shared_cb(self, activity):
 logger.debug('Chat was shared')
 self._setup()

 def _setup(self):
 self.text_channel = TextChannelWrapper(
 self._shared_activity.telepathy_text_chan,
 self._shared_activity.telepathy_conn)
 self.text_channel.set_received_callback(
 self._received_cb)
 self._alert(_('On-line'), _('Connected'))
 self._shared_activity.connect('buddy-joined',
 self._buddy_joined_cb)
 self._shared_activity.connect('buddy-left',
 self._buddy_left_cb)
 self.entry.set_sensitive(True)
 self.entry.grab_focus()

 def _joined_cb(self, activity):
 """Joined a shared activity."""
 if not self._shared_activity:
 return
 logger.debug('Joined a shared chat')
 for buddy in \
 self._shared_activity.get_joined_buddies():
 self._buddy_already_exists(buddy)
 self._setup()

 def _received_cb(self, buddy, text):
 """Show message that was received."""
 if buddy:
 nick = buddy.props.nick
 else:
 nick = '???'
 logger.debug(
 'Received message from %s: %s', nick, text)
 self.add_text(buddy, text)

 def _alert(self, title, text=None):
 alert = NotifyAlert(timeout=5)

The MiniChat Activity 83

 alert.props.title = title
 alert.props.msg = text
 self.add_alert(alert)
 alert.connect('response', self._alert_cancel_cb)
 alert.show()

 def _alert_cancel_cb(self, alert, response_id):
 self.remove_alert(alert)

 def _buddy_joined_cb (self, activity, buddy):
 """Show a buddy who joined"""
 if buddy == self.owner:
 return
 if buddy:
 nick = buddy.props.nick
 else:
 nick = '???'
 self.add_text(buddy, buddy.props.nick+'
 '+_('joined the chat'),
 status_message=True)

 def _buddy_left_cb (self, activity, buddy):
 """Show a buddy who joined"""
 if buddy == self.owner:
 return
 if buddy:
 nick = buddy.props.nick
 else:
 nick = '???'
 self.add_text(buddy, buddy.props.nick+'
 '+_('left the chat'),
 status_message=True)

 def _buddy_already_exists(self, buddy):
 """Show a buddy already in the chat."""
 if buddy == self.owner:
 return
 if buddy:
 nick = buddy.props.nick
 else:
 nick = '???'
 self.add_text(buddy, buddy.props.nick+
 ' '+_('is here'),
 status_message=True)

 def make_root(self):
 conversation = hippo.CanvasBox(
 spacing=0,
 background_color=COLOR_WHITE.get_int())
 self.conversation = conversation

 entry = gtk.Entry()
 entry.modify_bg(gtk.STATE_INSENSITIVE,
 COLOR_WHITE.get_gdk_color())
 entry.modify_base(gtk.STATE_INSENSITIVE,
 COLOR_WHITE.get_gdk_color())
 entry.set_sensitive(False)
 entry.connect('activate',
 self.entry_activate_cb)
 self.entry = entry

 hbox = gtk.HBox()
 hbox.add(entry)

 sw = hippo.CanvasScrollbars()
 sw.set_policy(hippo.ORIENTATION_HORIZONTAL,
 hippo.SCROLLBAR_NEVER)

The MiniChat Activity 84

 sw.set_root(conversation)
 self.scrolled_window = sw

 vadj = self.scrolled_window.props.widget.\
 get_vadjustment()
 vadj.connect('changed', self.rescroll)
 vadj.connect('value-changed',
 self.scroll_value_changed_cb)

 canvas = hippo.Canvas()
 canvas.set_root(sw)

 box = gtk.VBox(homogeneous=False)
 box.pack_start(hbox, expand=False)
 box.pack_start(canvas)

 return box

 def rescroll(self, adj, scroll=None):
 """Scroll the chat window to the bottom"""
 if self._scroll_auto:
 adj.set_value(adj.upper-adj.page_size)
 self._scroll_value = adj.get_value()

 def scroll_value_changed_cb(self, adj, scroll=None):
 """Turn auto scrolling on or off.

 If the user scrolled up, turn it off.
 If the user scrolled to the bottom, turn it back on.
 """
 if adj.get_value() < self._scroll_value:
 self._scroll_auto = False
 elif adj.get_value() == adj.upper-adj.page_size:
 self._scroll_auto = True

 def add_text(self, buddy, text, status_message=False):
 """Display text on screen, with name and colors.

 buddy -- buddy object
 text -- string, what the buddy said
 status_message -- boolean
 False: show what buddy said
 True: show what buddy did

 hippo layout:
 .------------- rb ---------------.
 | +name_vbox+ +----msg_vbox----+ |
 | | | | | | | |
 | | nick: | | +--msg_hbox--+ | |
 | | | | | text | | |
 | +---------+ | +------------+ | |
 | | | |
 | | +--msg_hbox--+ | |
 | | | text | | |
 | | +------------+ | |
 | +----------------+ |
 `--------------------------------'
 """
 if buddy:
 nick = buddy.props.nick
 color = buddy.props.color
 try:
 color_stroke_html, color_fill_html = \
 color.split(',')
 except ValueError:
 color_stroke_html, color_fill_html = (
 '#000000', '#888888')

The MiniChat Activity 85

 # Select text color based on fill color:
 color_fill_rgba = Color(
 color_fill_html).get_rgba()
 color_fill_gray = (color_fill_rgba[0] +
 color_fill_rgba[1] +
 color_fill_rgba[2])/3
 color_stroke = Color(
 color_stroke_html).get_int()
 color_fill = Color(color_fill_html).get_int()
 if color_fill_gray < 0.5:
 text_color = COLOR_WHITE.get_int()
 else:
 text_color = COLOR_BLACK.get_int()
 else:
 nick = '???'
 # XXX: should be '' but leave for debugging
 color_stroke = COLOR_BLACK.get_int()
 color_fill = COLOR_WHITE.get_int()
 text_color = COLOR_BLACK.get_int()
 color = '#000000,#FFFFFF'

 # Check for Right-To-Left languages:
 if pango.find_base_dir(nick, -1) == \
 pango.DIRECTION_RTL:
 lang_rtl = True
 else:
 lang_rtl = False

 # Check if new message box or add text to previous:
 new_msg = True
 if self._last_msg_sender:
 if not status_message:
 if buddy == self._last_msg_sender:
 # Add text to previous message
 new_msg = False

 if not new_msg:
 rb = self._last_msg
 msg_vbox = rb.get_children()[1]
 msg_hbox = hippo.CanvasBox(
 orientation=hippo.ORIENTATION_HORIZONTAL)
 msg_vbox.append(msg_hbox)
 else:
 rb = CanvasRoundBox(
 background_color=color_fill,
 border_color=color_stroke,
 padding=4)
 rb.props.border_color = color_stroke
 self._last_msg = rb
 self._last_msg_sender = buddy
 if not status_message:
 name = hippo.CanvasText(text=nick+': ',
 color=text_color,
 font_desc=FONT_BOLD.get_pango_desc())
 name_vbox = hippo.CanvasBox(
 orientation=hippo.ORIENTATION_VERTICAL)
 name_vbox.append(name)
 rb.append(name_vbox)
 msg_vbox = hippo.CanvasBox(
 orientation=hippo.ORIENTATION_VERTICAL)
 rb.append(msg_vbox)
 msg_hbox = hippo.CanvasBox(
 orientation=hippo.ORIENTATION_HORIZONTAL)
 msg_vbox.append(msg_hbox)

 if status_message:
 self._last_msg_sender = None

The MiniChat Activity 86

 if text:
 message = hippo.CanvasText(
 text=text,
 size_mode=hippo.CANVAS_SIZE_WRAP_WORD,
 color=text_color,
 font_desc=FONT_NORMAL.get_pango_desc(),
 xalign=hippo.ALIGNMENT_START)
 msg_hbox.append(message)

 # Order of boxes for RTL languages:
 if lang_rtl:
 msg_hbox.reverse()
 if new_msg:
 rb.reverse()

 if new_msg:
 box = hippo.CanvasBox(padding=2)
 box.append(rb)
 self.conversation.append(box)

 def entry_activate_cb(self, entry):
 text = entry.props.text
 logger.debug('Entry: %s' % text)
 if text:
 self.add_text(self.owner, text)
 entry.props.text = ''
 if self.text_channel:
 self.text_channel.send(text)
 else:
 logger.debug(
 'Tried to send message but text '
 'channel not connected.')

And this is what the Activity looks like in action:

Try launching more than one copy of sugar-emulator, with this Activity installed in each. If you're using
Fedora 10 and SUGAR_PROFILE the Activity does not need to be installed more than once, but if you're
using a later version of Sugar that requires separate Linux userids for each instance you'll need to maintain
separate copies of the code for each user. In your own projects using a central Git repository at
git.sugarlabs.org will make this easy. You just do a git push to copy your changes to the central repository
and a git pull to copy them to your second userid. The second userid can use the public URL. There's no
need to set up SSH for any user other than the primary one.

The MiniChat Activity 87

http://git.sugarlabs.org

You may have read somewhere that you can install an Activity on one machine and share that Activity with
another that does not have the activity installed. In such a case the second machine would get a copy of the
Activity from the first machine and install it automatically. You may have also read that if two users of a
shared Activity have different versions of that Activity then the one who has the newer version will
automatically update the older. Neither statement is true now or is likely to be true in the near future. These
ideas are discussed on the mailing lists from time to time but there are practical difficulties to overcome
before anything like that could work, mostly having to do with security. For now both users of a shared
Activity must have the Activity installed. On the other hand, depending on how the Activity is written two
different versions of an Activity may be able to communicate with one another. If the messages they
exchange are in the same format there should be no problem.

Once you have both instances of sugar-emulator going you can launch MiniChat on one and invite the second
user to Join the Chat session. You can do both with the Neighborhood panes of each instance. Making the
invitation looks like this:

Accepting it looks like this:

After you've played with MiniChat for awhile come back and we'll discuss the secrets of using Telepathy to
create a shared Activity.

Know who Your Buddies Are

XMPP, as we said before, is the Extended Messaging and Presence Protocol. â�� Presence is just what it
sounds like; it handles letting you know who is available to share your Activity, as well as what other
Activities are available to share. There are two ways to share your Activity. The first one is when you change
the Share with: pulldown on the standard toolbar so it reads My Neighborhood instead of Private. That
means anyone on the network can share your Activity. The other way to share is to go to the Neighborhood
view and invite someone specific to share. The person getting the invitation has no idea of the invitation was
specifically for him or broadcast to the Neighborhood. The technical term for persons sharing your Activity is
Buddies. The place where Buddies meet and collaborate is called an MUC or Multi User Chatroom.

Know who Your Buddies Are 88

The code used by our Activity for inviting Buddies and joining the Activity as a Buddy is in the __init__()
method:

if self._shared_activity:
 # we are joining the activity
 self.connect('joined', self._joined_cb)
 if self.get_shared():
 # we have already joined
 self._joined_cb()
 else:
 # we are creating the activity
 if not self.metadata or self.metadata.get(
 'share-scope',
 SCOPE_PRIVATE) == SCOPE_PRIVATE:
 # if we are in private session
 self._alert(_('Off-line'),
 _('Share, or invite someone.'))
 self.connect('shared', self._shared_cb)

 def _shared_cb(self, activity):
 logger.debug('Chat was shared')
 self._setup()

 def _joined_cb(self, activity):
 """Joined a shared activity."""
 if not self._shared_activity:
 return
 logger.debug('Joined a shared chat')
 for buddy in \
 self._shared_activity.get_joined_buddies():
 self._buddy_already_exists(buddy)
 self._setup()

 def _setup(self):
 self.text_channel = TextChannelWrapper(
 self._shared_activity.telepathy_text_chan,
 self._shared_activity.telepathy_conn)
 self.text_channel.set_received_callback(
 self._received_cb)
 self._alert(_('On-line'), _('Connected'))
 self._shared_activity.connect('buddy-joined',
 self._buddy_joined_cb)
 self._shared_activity.connect('buddy-left',
 self._buddy_left_cb)
 self.entry.set_sensitive(True)
 self.entry.grab_focus()

There are two ways to launch an Activity: as the first user of an Activity or by joining an existing Activity.
The first line above in bold determines whether we are joining or are the first user of the Activity. If so we
ask for the _joined_cb() method to be run when the 'joined' event occurs. This method gets a buddy list from
the _shared_activity object and creates messages in the user interface informing the user that these buddies are
already in the chat room. Then it runs the _setup() method.

If we are not joining an existing Activity then we check to see if we are currently sharing the Activity with
anyone. If we aren't we pop up a message telling the user to invite someone to chat. We also request that
when the 'shared' even happens the _shared_cb() method should run. This method just runs the _setup()
method.

The _setup() method creates a TextChannelWrapper object using the code in textchannel.py. It also tells
the _shared_activity object that it wants some callback methods run when new buddies join the Activity and
when existing buddies leave the Activity. Everything you need to know about your buddies can be found in
the code above, except how to send messages to them. For that we use the Text Channel. There is no need

Know who Your Buddies Are 89

to learn about the Text Channel in great detail because the TextChannelWrapper class does everything you'll
ever need to do with the TextChannel and hides the details from you.

 def entry_activate_cb(self, entry):
 text = entry.props.text
 logger.debug('Entry: %s' % text)
 if text:
 self.add_text(self.owner, text)
 entry.props.text = ''
 if self.text_channel:
 self.text_channel.send(text)
 else:
 logger.debug(
 'Tried to send message but text '
 'channel not connected.')

The add_text() method is of interest. It takes the owner of the message and figures out what colors belong to
that owner and displays the message in those colors. In the case of messages sent by the Activity it gets the
owner like this in the __init__() method:

 self.owner = self._pservice.get_owner()

In the case of received messages it gets the buddy the message came from:

 def _received_cb(self, buddy, text):
 """Show message that was received."""
 if buddy:
 nick = buddy.props.nick
 else:
 nick = '???'
 logger.debug('Received message from %s: %s',
 nick, text)
 self.add_text(buddy, text)

But what if we want to do more than just send text messages back and forth? What do we use for that?

It's A Series Of Tubes!

No, not the Internet. Telepathy has a concept called Tubes which describes the way instances of an Activity
can communicate together. What Telepathy does is take the Text Channel and build Tubes on top of it. There
are two kinds of Tubes:

D-Bus Tubes•
Stream Tubes•

A D-Bus Tube is used to enable one instance of an Activity to call methods in the Buddy instances of the
Activity. A Stream Tube is used for sending data over Sockets, for instance for copying a file from one
instance of an Activity to another. A Socket is a way of communicating over a network using Internet
Protocols. For instance the HTTP protocol used by the World Wide Web is implemented with Sockets. In the
next example we'll use HTTP to transfer books from one instance of Read Etexts III to another.

Read Etexts III, Now with Book Sharing!

The Git repository with the code samples for this book has a file named ReadEtextsActivity3.py in the
Making_Shared_Activities directory which looks like this:

import sys
import os

It's A Series Of Tubes! 90

import logging
import tempfile
import time
import zipfile
import pygtk
import gtk
import pango
import dbus
import gobject
import telepathy
from sugar.activity import activity
from sugar.graphics import style
from sugar import network
from sugar.datastore import datastore
from sugar.graphics.alert import NotifyAlert
from toolbar import ReadToolbar, ViewToolbar
from gettext import gettext as _

page=0
PAGE_SIZE = 45
TOOLBAR_READ = 2

logger = logging.getLogger('read-etexts2-activity')

class ReadHTTPRequestHandler(
 network.ChunkedGlibHTTPRequestHandler):
 """HTTP Request Handler for transferring document
 while collaborating.

 RequestHandler class that integrates with Glib
 mainloop. It writes the specified file to the
 client in chunks, returning control to the
 mainloop between chunks.

 """
 def translate_path(self, path):
 """Return the filepath to the shared document."""
 return self.server.filepath

class ReadHTTPServer(network.GlibTCPServer):
 """HTTP Server for transferring document while
 collaborating."""
 def __init__(self, server_address, filepath):
 """Set up the GlibTCPServer with the
 ReadHTTPRequestHandler.

 filepath -- path to shared document to be served.
 """
 self.filepath = filepath
 network.GlibTCPServer.__init__(self,
 server_address, ReadHTTPRequestHandler)

class ReadURLDownloader(network.GlibURLDownloader):
 """URLDownloader that provides content-length and
 content-type."""

 def get_content_length(self):
 """Return the content-length of the download."""
 if self._info is not None:
 return int(self._info.headers.get(
 'Content-Length'))

 def get_content_type(self):
 """Return the content-type of the download."""
 if self._info is not None:

Read Etexts III, Now with Book Sharing! 91

 return self._info.headers.get('Content-type')
 return None

READ_STREAM_SERVICE = 'read-etexts-activity-http'

class ReadEtextsActivity(activity.Activity):
 def __init__(self, handle):
 "The entry point to the Activity"
 global page
 activity.Activity.__init__(self, handle)

 self.fileserver = None
 self.object_id = handle.object_id

 toolbox = activity.ActivityToolbox(self)
 activity_toolbar = toolbox.get_activity_toolbar()
 activity_toolbar.keep.props.visible = False

 self.edit_toolbar = activity.EditToolbar()
 self.edit_toolbar.undo.props.visible = False
 self.edit_toolbar.redo.props.visible = False
 self.edit_toolbar.separator.props.visible = False
 self.edit_toolbar.copy.set_sensitive(False)
 self.edit_toolbar.copy.connect('clicked',
 self.edit_toolbar_copy_cb)
 self.edit_toolbar.paste.props.visible = False
 toolbox.add_toolbar(_('Edit'), self.edit_toolbar)
 self.edit_toolbar.show()

 self.read_toolbar = ReadToolbar()
 toolbox.add_toolbar(_('Read'), self.read_toolbar)
 self.read_toolbar.back.connect('clicked',
 self.go_back_cb)
 self.read_toolbar.forward.connect('clicked',
 self.go_forward_cb)
 self.read_toolbar.num_page_entry.connect('activate',
 self.num_page_entry_activate_cb)
 self.read_toolbar.show()

 self.view_toolbar = ViewToolbar()
 toolbox.add_toolbar(_('View'), self.view_toolbar)
 self.view_toolbar.connect('go-fullscreen',
 self.view_toolbar_go_fullscreen_cb)
 self.view_toolbar.zoom_in.connect('clicked',
 self.zoom_in_cb)
 self.view_toolbar.zoom_out.connect('clicked',
 self.zoom_out_cb)
 self.view_toolbar.show()

 self.set_toolbox(toolbox)
 toolbox.show()
 self.scrolled_window = gtk.ScrolledWindow()
 self.scrolled_window.set_policy(gtk.POLICY_NEVER,
 gtk.POLICY_AUTOMATIC)
 self.scrolled_window.props.shadow_type = \
 gtk.SHADOW_NONE

 self.textview = gtk.TextView()
 self.textview.set_editable(False)
 self.textview.set_cursor_visible(False)
 self.textview.set_left_margin(50)
 self.textview.connect("key_press_event",
 self.keypress_cb)

 self.progressbar = gtk.ProgressBar()
 self.progressbar.set_orientation(
 gtk.PROGRESS_LEFT_TO_RIGHT)

Read Etexts III, Now with Book Sharing! 92

 self.progressbar.set_fraction(0.0)

 self.scrolled_window.add(self.textview)
 self.textview.show()
 self.scrolled_window.show()

 vbox = gtk.VBox()
 vbox.pack_start(self.progressbar, False,
 False, 10)
 vbox.pack_start(self.scrolled_window)
 self.set_canvas(vbox)
 vbox.show()

 page = 0
 self.clipboard = gtk.Clipboard(
 display=gtk.gdk.display_get_default(),
 selection="CLIPBOARD")
 self.textview.grab_focus()
 self.font_desc = pango.FontDescription("sans %d" %
 style.zoom(10))
 self.textview.modify_font(self.font_desc)

 buffer = self.textview.get_buffer()
 self.markset_id = buffer.connect("mark-set",
 self.mark_set_cb)

 self.toolbox.set_current_toolbar(TOOLBAR_READ)
 self.unused_download_tubes = set()
 self.want_document = True
 self.download_content_length = 0
 self.download_content_type = None
 # Status of temp file used for write_file:
 self.tempfile = None
 self.close_requested = False
 self.connect("shared", self.shared_cb)

 self.is_received_document = False

 if self._shared_activity and \
 handle.object_id == None:
 # We're joining, and we don't already have
 # the document.
 if self.get_shared():
 # Already joined for some reason, just get the
 # document
 self.joined_cb(self)
 else:
 # Wait for a successful join before trying to get
 # the document
 self.connect("joined", self.joined_cb)

 def keypress_cb(self, widget, event):
 "Respond when the user presses one of the arrow keys"
 keyname = gtk.gdk.keyval_name(event.keyval)
 print keyname
 if keyname == 'plus':
 self.font_increase()
 return True
 if keyname == 'minus':
 self.font_decrease()
 return True
 if keyname == 'Page_Up' :
 self.page_previous()
 return True
 if keyname == 'Page_Down':
 self.page_next()
 return True

Read Etexts III, Now with Book Sharing! 93

 if keyname == 'Up' or keyname == 'KP_Up' \
 or keyname == 'KP_Left':
 self.scroll_up()
 return True
 if keyname == 'Down' or keyname == 'KP_Down' \
 or keyname == 'KP_Right':
 self.scroll_down()
 return True
 return False

 def num_page_entry_activate_cb(self, entry):
 global page
 if entry.props.text:
 new_page = int(entry.props.text) - 1
 else:
 new_page = 0

 if new_page >= self.read_toolbar.total_pages:
 new_page = self.read_toolbar.total_pages - 1
 elif new_page < 0:
 new_page = 0

 self.read_toolbar.current_page = new_page
 self.read_toolbar.set_current_page(new_page)
 self.show_page(new_page)
 entry.props.text = str(new_page + 1)
 self.read_toolbar.update_nav_buttons()
 page = new_page

 def go_back_cb(self, button):
 self.page_previous()

 def go_forward_cb(self, button):
 self.page_next()

 def page_previous(self):
 global page
 page=page-1
 if page < 0: page=0
 self.read_toolbar.set_current_page(page)
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.upper - \
 v_adjustment.page_size

 def page_next(self):
 global page
 page=page+1
 if page >= len(self.page_index): page=0
 self.read_toolbar.set_current_page(page)
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.lower

 def zoom_in_cb(self, button):
 self.font_increase()

 def zoom_out_cb(self, button):
 self.font_decrease()

 def font_decrease(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size - 1
 if font_size < 1:
 font_size = 1

Read Etexts III, Now with Book Sharing! 94

 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def font_increase(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size + 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def mark_set_cb(self, textbuffer, iter, textmark):

 if textbuffer.get_has_selection():
 begin, end = textbuffer.get_selection_bounds()
 self.edit_toolbar.copy.set_sensitive(True)
 else:
 self.edit_toolbar.copy.set_sensitive(False)

 def edit_toolbar_copy_cb(self, button):
 textbuffer = self.textview.get_buffer()
 begin, end = textbuffer.get_selection_bounds()
 copy_text = textbuffer.get_text(begin, end)
 self.clipboard.set_text(copy_text)

 def view_toolbar_go_fullscreen_cb(self, view_toolbar):
 self.fullscreen()

 def scroll_down(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.upper - \
 v_adjustment.page_size:
 self.page_next()
 return
 if v_adjustment.value < v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.value + \
 v_adjustment.step_increment
 if new_value > v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.upper - \
 v_adjustment.page_size
 v_adjustment.value = new_value

 def scroll_up(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.lower:
 self.page_previous()
 return
 if v_adjustment.value > v_adjustment.lower:
 new_value = v_adjustment.value - \
 v_adjustment.step_increment
 if new_value < v_adjustment.lower:
 new_value = v_adjustment.lower
 v_adjustment.value = new_value

 def show_page(self, page_number):
 global PAGE_SIZE, current_word
 position = self.page_index[page_number]
 self.etext_file.seek(position)
 linecount = 0
 label_text = '\n\n\n'
 textbuffer = self.textview.get_buffer()
 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + unicode(line,
 'iso-8859-1')

Read Etexts III, Now with Book Sharing! 95

 linecount = linecount + 1
 label_text = label_text + '\n\n\n'
 textbuffer.set_text(label_text)
 self.textview.set_buffer(textbuffer)

 def save_extracted_file(self, zipfile, filename):
 "Extract the file to a temp directory for viewing"
 filebytes = zipfile.read(filename)
 outfn = self.make_new_filename(filename)
 if (outfn == ''):
 return False
 f = open(os.path.join(self.get_activity_root(),
 'tmp', outfn), 'w')
 try:
 f.write(filebytes)
 finally:
 f.close()

 def get_saved_page_number(self):
 global page
 title = self.metadata.get('title', '')
 if title == '' or not \
 title[len(title)-1].isdigit():
 page = 0
 else:
 i = len(title) - 1
 newPage = ''
 while (title[i].isdigit() and i > 0):
 newPage = title[i] + newPage
 i = i - 1
 if title[i] == 'P':
 page = int(newPage) - 1
 else:
 # not a page number; maybe a
 # volume number.
 page = 0

 def save_page_number(self):
 global page
 title = self.metadata.get('title', '')
 if title == '' or not \
 title[len(title)- 1].isdigit():
 title = title + ' P' + str(page + 1)
 else:
 i = len(title) - 1
 while (title[i].isdigit() and i > 0):
 i = i - 1
 if title[i] == 'P':
 title = title[0:i] + 'P' + str(page + 1)
 else:
 title = title + ' P' + str(page + 1)
 self.metadata['title'] = title

 def read_file(self, filename):
 "Read the Etext file"
 global PAGE_SIZE, page

 tempfile = os.path.join(self.get_activity_root(),
 'instance', 'tmp%i' % time.time())
 os.link(filename, tempfile)
 self.tempfile = tempfile

 if zipfile.is_zipfile(filename):
 self.zf = zipfile.ZipFile(filename, 'r')
 self.book_files = self.zf.namelist()
 self.save_extracted_file(self.zf,
 self.book_files[0])

Read Etexts III, Now with Book Sharing! 96

 currentFileName = os.path.join(
 self.get_activity_root(),
 'tmp', self.book_files[0])
 else:
 currentFileName = filename

 self.etext_file = open(currentFileName,"r")
 self.page_index = [0]
 pagecount = 0
 linecount = 0
 while self.etext_file:
 line = self.etext_file.readline()
 if not line:
 break
 linecount = linecount + 1
 if linecount >= PAGE_SIZE:
 position = self.etext_file.tell()
 self.page_index.append(position)
 linecount = 0
 pagecount = pagecount + 1
 if filename.endswith(".zip"):
 os.remove(currentFileName)
 self.get_saved_page_number()
 self.show_page(page)
 self.read_toolbar.set_total_pages(
 pagecount + 1)
 self.read_toolbar.set_current_page(page)

 # We've got the document, so if we're a shared
 # activity, offer it
 if self.get_shared():
 self.watch_for_tubes()
 self.share_document()

 def make_new_filename(self, filename):
 partition_tuple = filename.rpartition('/')
 return partition_tuple[2]

 def write_file(self, filename):
 "Save meta data for the file."
 if self.is_received_document:
 # This document was given to us by someone, so
 # we have to save it to the Journal.
 self.etext_file.seek(0)
 filebytes = self.etext_file.read()
 f = open(filename, 'wb')
 try:
 f.write(filebytes)
 finally:
 f.close()
 elif self.tempfile:
 if self.close_requested:
 os.link(self.tempfile, filename)
 logger.debug(
 "Removing temp file %s because we "
 "will close",
 self.tempfile)
 os.unlink(self.tempfile)
 self.tempfile = None
 else:
 # skip saving empty file
 raise NotImplementedError

 self.metadata['activity'] = self.get_bundle_id()
 self.save_page_number()

 def can_close(self):

Read Etexts III, Now with Book Sharing! 97

 self.close_requested = True
 return True

 def joined_cb(self, also_self):
 """Callback for when a shared activity is joined.

 Get the shared document from another participant.
 """
 self.watch_for_tubes()
 gobject.idle_add(self.get_document)

 def get_document(self):
 if not self.want_document:
 return False

 # Assign a file path to download if one
 # doesn't exist yet
 if not self._jobject.file_path:
 path = os.path.join(self.get_activity_root(),
 'instance',
 'tmp%i' % time.time())
 else:
 path = self._jobject.file_path

 # Pick an arbitrary tube we can try to
 # download the document from
 try:
 tube_id = self.unused_download_tubes.pop()
 except (ValueError, KeyError), e:
 logger.debug(
 'No tubes to get the document '
 'from right now: %s',
 e)
 return False

 # Avoid trying to download the document multiple
 # timesat once
 self.want_document = False
 gobject.idle_add(self.download_document, tube_id, path)
 return False

 def download_document(self, tube_id, path):
 chan = self._shared_activity.telepathy_tubes_chan
 iface = chan[telepathy.CHANNEL_TYPE_TUBES]
 addr = iface.AcceptStreamTube(tube_id,
 telepathy.SOCKET_ADDRESS_TYPE_IPV4,
 telepathy.SOCKET_ACCESS_CONTROL_LOCALHOST, 0,
 utf8_strings=True)
 logger.debug('Accepted stream tube: '
 'listening address is %r',
 addr)
 assert isinstance(addr, dbus.Struct)
 assert len(addr) == 2
 assert isinstance(addr[0], str)
 assert isinstance(addr[1], (int, long))
 assert addr[1] > 0 and addr[1] < 65536
 port = int(addr[1])

 self.progressbar.show()
 getter = ReadURLDownloader(
 "http://%s:%d/document"
 % (addr[0], port))
 getter.connect("finished",
 self.download_result_cb, tube_id)
 getter.connect("progress",
 self.download_progress_cb, tube_id)
 getter.connect("error",

Read Etexts III, Now with Book Sharing! 98

 self.download_error_cb, tube_id)
 logger.debug("Starting download to %s...", path)
 getter.start(path)
 self.download_content_length = \
 getter.get_content_length()
 self.download_content_type = \
 getter.get_content_type()
 return False

 def download_progress_cb(self, getter,
 bytes_downloaded, tube_id):
 if self.download_content_length > 0:
 logger.debug(
 "Downloaded %u of %u bytes from tube %u...",
 bytes_downloaded,
 self.download_content_length,
 tube_id)
 else:
 logger.debug("Downloaded %u bytes from tube %u...",
 bytes_downloaded, tube_id)
 total = self.download_content_length
 self.set_downloaded_bytes(bytes_downloaded, total)
 gtk.gdk.threads_enter()
 while gtk.events_pending():
 gtk.main_iteration()
 gtk.gdk.threads_leave()

 def set_downloaded_bytes(self, bytes, total):
 fraction = float(bytes) / float(total)
 self.progressbar.set_fraction(fraction)
 logger.debug("Downloaded percent", fraction)

 def clear_downloaded_bytes(self):
 self.progressbar.set_fraction(0.0)
 logger.debug("Cleared download bytes")

 def download_error_cb(self, getter, err, tube_id):
 self.progressbar.hide()
 logger.debug(
 "Error getting document from tube %u: %s",
 tube_id, err)
 self.alert(_('Failure'),
 _('Error getting document from tube'))
 self.want_document = True
 self.download_content_length = 0
 self.download_content_type = None
 gobject.idle_add(self.get_document)

 def download_result_cb(self, getter, tempfile,
 suggested_name, tube_id):
 if self.download_content_type.startswith(
 'text/html'):
 # got an error page instead
 self.download_error_cb(getter,
 'HTTP Error', tube_id)
 return

 del self.unused_download_tubes

 self.tempfile = tempfile
 file_path = os.path.join(self.get_activity_root(),
 'instance', '%i' % time.time())
 logger.debug(
 "Saving file %s to datastore...", file_path)
 os.link(tempfile, file_path)
 self._jobject.file_path = file_path
 datastore.write(self._jobject,

Read Etexts III, Now with Book Sharing! 99

 transfer_ownership=True)

 logger.debug(
 "Got document %s (%s) from tube %u",
 tempfile, suggested_name, tube_id)
 self.is_received_document = True
 self.read_file(tempfile)
 self.save()
 self.progressbar.hide()

 def shared_cb(self, activityid):
 """Callback when activity shared.

 Set up to share the document.

 """
 # We initiated this activity and have now shared it,
 # so by definition we have the file.
 logger.debug('Activity became shared')
 self.watch_for_tubes()
 self.share_document()

 def share_document(self):
 """Share the document."""
 h = hash(self._activity_id)
 port = 1024 + (h % 64511)
 logger.debug(
 'Starting HTTP server on port %d', port)
 self.fileserver = ReadHTTPServer(("", port),
 self.tempfile)

 # Make a tube for it
 chan = self._shared_activity.telepathy_tubes_chan
 iface = chan[telepathy.CHANNEL_TYPE_TUBES]
 self.fileserver_tube_id = iface.OfferStreamTube(
 READ_STREAM_SERVICE,
 {},
 telepathy.SOCKET_ADDRESS_TYPE_IPV4,
 ('127.0.0.1', dbus.UInt16(port)),
 telepathy.SOCKET_ACCESS_CONTROL_LOCALHOST,
 0)

 def watch_for_tubes(self):
 """Watch for new tubes."""
 tubes_chan = self._shared_activity.telepathy_tubes_chan

 tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 connect_to_signal(
 'NewTube', self.new_tube_cb)
 tubes_chan[telepathy.CHANNEL_TYPE_TUBES].ListTubes(
 reply_handler=self.list_tubes_reply_cb,
 error_handler=self.list_tubes_error_cb)

 def new_tube_cb(self, tube_id, initiator, tube_type,
 service, params, state):
 """Callback when a new tube becomes available."""
 logger.debug(
 'New tube: ID=%d initator=%d type=%d service=%s '
 'params=%r state=%d', tube_id, initiator,
 tube_type, service, params, state)
 if service == READ_STREAM_SERVICE:
 logger.debug('I could download from that tube')
 self.unused_download_tubes.add(tube_id)
 # if no download is in progress, let's fetch
 # the document
 if self.want_document:
 gobject.idle_add(self.get_document)

Read Etexts III, Now with Book Sharing! 100

 def list_tubes_reply_cb(self, tubes):
 """Callback when new tubes are available."""
 for tube_info in tubes:
 self.new_tube_cb(*tube_info)

 def list_tubes_error_cb(self, e):
 """Handle ListTubes error by logging."""
 logger.error('ListTubes() failed: %s', e)

 def alert(self, title, text=None):
 alert = NotifyAlert(timeout=20)
 alert.props.title = title
 alert.props.msg = text
 self.add_alert(alert)
 alert.connect('response', self.alert_cancel_cb)
 alert.show()

 def alert_cancel_cb(self, alert, response_id):
 self.remove_alert(alert)
 self.textview.grab_focus()

The contents of activity.info are these lines:

[Activity]
name = Read Etexts III
service_name = net.flossmanuals.ReadEtextsActivity
icon = read-etexts
exec = sugar-activity ReadEtextsActivity3.ReadEtextsActivity
show_launcher = no
activity_version = 1
mime_types = text/plain;application/zip
license = GPLv2+

To try it out, download a Project Gutenberg book to the Journal, open it with this latest Read Etexts III, then
share it with a second user who has the program installed but not running. She should accept the invitation to
join that appears in her Neighborhood view. When she does Read Etexts II will start up and copy the book
from the first user over the network and load it. The Activity will first show a blank screen, but then a
progress bar will appear just under the toolbar and indicate the progress of the copying. When it is finished
the first page of the book will appear.

So how does it work? Let's look at the code. The first points of interest are the class definitions that appear at
the beginning: ReadHTTPRequestHandler, ReadHTTPServer, and ReadURLDownloader. These three
classes extend (that is to say, inherit code from) classes provided by the sugar.network package. These
classes provide an HTTP client for receiving the book and an HTTP Server for sending the book.

This is the code used to send a book:

 def shared_cb(self, activityid):
 """Callback when activity shared.

 Set up to share the document.

 """
 # We initiated this activity and have now shared it,
 # so by definition we have the file.
 logger.debug('Activity became shared')
 self.watch_for_tubes()
 self.share_document()

 def share_document(self):
 """Share the document."""
 h = hash(self._activity_id)

Read Etexts III, Now with Book Sharing! 101

 port = 1024 + (h % 64511)
 logger.debug(
 'Starting HTTP server on port %d', port)
 self.fileserver = ReadHTTPServer(("", port),
 self.tempfile)

 # Make a tube for it
 chan = self._shared_activity.telepathy_tubes_chan
 iface = chan[telepathy.CHANNEL_TYPE_TUBES]
 self.fileserver_tube_id = iface.OfferStreamTube(
 READ_STREAM_SERVICE,
 {},
 telepathy.SOCKET_ADDRESS_TYPE_IPV4,
 ('127.0.0.1', dbus.UInt16(port)),
 telepathy.SOCKET_ACCESS_CONTROL_LOCALHOST,
 0)

You will notice that a hash of the _activity_id is used to get a port number. That port is used for the HTTP
server and is passed to Telepathy, which offers it as a Stream Tube. On the receiving side we have this code:

 def joined_cb(self, also_self):
 """Callback for when a shared activity is joined.

 Get the shared document from another participant.
 """
 self.watch_for_tubes()
 gobject.idle_add(self.get_document)

 def get_document(self):
 if not self.want_document:
 return False

 # Assign a file path to download if one doesn't
 # exist yet
 if not self._jobject.file_path:
 path = os.path.join(self.get_activity_root(),
 'instance',
 'tmp%i' % time.time())
 else:
 path = self._jobject.file_path

 # Pick an arbitrary tube we can try to download the
 # document from
 try:
 tube_id = self.unused_download_tubes.pop()
 except (ValueError, KeyError), e:
 logger.debug(
 'No tubes to get the document from '
 'right now: %s',
 e)
 return False

 # Avoid trying to download the document multiple
 # times at once
 self.want_document = False
 gobject.idle_add(self.download_document,
 tube_id, path)
 return False

 def download_document(self, tube_id, path):
 chan = self._shared_activity.telepathy_tubes_chan
 iface = chan[telepathy.CHANNEL_TYPE_TUBES]
 addr = iface.AcceptStreamTube(tube_id,
 telepathy.SOCKET_ADDRESS_TYPE_IPV4,
 telepathy.SOCKET_ACCESS_CONTROL_LOCALHOST,
 0,

Read Etexts III, Now with Book Sharing! 102

 utf8_strings=True)
 logger.debug(
 'Accepted stream tube: listening address is %r',
 addr)
 assert isinstance(addr, dbus.Struct)
 assert len(addr) == 2
 assert isinstance(addr[0], str)
 assert isinstance(addr[1], (int, long))
 assert addr[1] > 0 and addr[1] < 65536
 port = int(addr[1])

 self.progressbar.show()
 getter = ReadURLDownloader(
 "http://%s:%d/document"
 % (addr[0], port))
 getter.connect("finished",
 self.download_result_cb, tube_id)
 getter.connect("progress",
 self.download_progress_cb, tube_id)
 getter.connect("error",
 self.download_error_cb, tube_id)
 logger.debug(
 "Starting download to %s...", path)
 getter.start(path)
 self.download_content_length = \
 getter.get_content_length()
 self.download_content_type = \
 getter.get_content_type()
 return False

 def download_progress_cb(self, getter,
 bytes_downloaded, tube_id):
 if self.download_content_length > 0:
 logger.debug(
 "Downloaded %u of %u bytes from tube %u...",
 bytes_downloaded,
 self.download_content_length,
 tube_id)
 else:
 logger.debug(
 "Downloaded %u bytes from tube %u...",
 bytes_downloaded, tube_id)
 total = self.download_content_length
 self.set_downloaded_bytes(bytes_downloaded,
 total)
 gtk.gdk.threads_enter()
 while gtk.events_pending():
 gtk.main_iteration()
 gtk.gdk.threads_leave()

 def download_error_cb(self, getter, err, tube_id):
 self.progressbar.hide()
 logger.debug(
 "Error getting document from tube %u: %s",
 tube_id, err)
 self.alert(_('Failure'),
 _('Error getting document from tube'))
 self.want_document = True
 self.download_content_length = 0
 self.download_content_type = None
 gobject.idle_add(self.get_document)

 def download_result_cb(self, getter, tempfile,
 suggested_name, tube_id):
 if self.download_content_type.startswith(
 'text/html'):
 # got an error page instead

Read Etexts III, Now with Book Sharing! 103

 self.download_error_cb(getter,
 'HTTP Error', tube_id)
 return

 del self.unused_download_tubes

 self.tempfile = tempfile
 file_path = os.path.join(self.get_activity_root(),
 'instance',
 '%i' % time.time())
 logger.debug(
 "Saving file %s to datastore...", file_path)
 os.link(tempfile, file_path)
 self._jobject.file_path = file_path
 datastore.write(self._jobject,
 transfer_ownership=True)

 logger.debug(
 "Got document %s (%s) from tube %u",
 tempfile, suggested_name, tube_id)
 self.is_received_document = True
 self.read_file(tempfile)
 self.save()
 self.progressbar.hide()

Telepathy gives us the address and port number associated with a Stream Tube and we set up the HTTP Client
to read from it. The client reads the file in chunks and calls download_progress_cb() after every chunk so we
can update a progress bar to show the user how the download is progressing. There are also callback methods
for when there is a download error and for when the download is finished,

The ReadURLDownloader class is not only useful for transferring files over Stream Tubes, it can also be
used to interact with websites and web services. My Activity Get Internet Archive Books uses this class for
that purpose.

The one remaining piece is the code which handles getting Stream Tubes to download the book from. In this
code, adapted from the Read Activity, as soon as an instance of an Activity receives a book it turns around
and offers to share it, thus the Activity may have several possible Tubes it could get the book from:

READ_STREAM_SERVICE = 'read-etexts-activity-http'

...

 def watch_for_tubes(self):
 """Watch for new tubes."""
 tubes_chan = self._shared_activity.\
 telepathy_tubes_chan

 tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 connect_to_signal(
 'NewTube',
 self.new_tube_cb)
 tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 ListTubes(
 reply_handler=self.list_tubes_reply_cb,
 error_handler=self.list_tubes_error_cb)

 def new_tube_cb(self, tube_id, initiator,
 tube_type, service, params, state):
 """Callback when a new tube becomes available."""
 logger.debug(
 'New tube: ID=%d initator=%d type=%d service=%s '
 'params=%r state=%d', tube_id, initiator,
 tube_type,
 service, params, state)

Read Etexts III, Now with Book Sharing! 104

 if service == READ_STREAM_SERVICE:
 logger.debug('I could download from that tube')
 self.unused_download_tubes.add(tube_id)
 # if no download is in progress,
 # let's fetch the document
 if self.want_document:
 gobject.idle_add(self.get_document)

 def list_tubes_reply_cb(self, tubes):
 """Callback when new tubes are available."""
 for tube_info in tubes:
 self.new_tube_cb(*tube_info)

 def list_tubes_error_cb(self, e):
 """Handle ListTubes error by logging."""
 logger.error('ListTubes() failed: %s', e)

The READ_STREAM_SERVICE constant is defined near the top of the source file.

Using D-Bus Tubes

D-Bus is a method of supporting IPC, or Inter-Process Communication, that was created for the GNOME
desktop environment. The idea of IPC is to allow two running programs to communicate with each other and
execute each other's code. GNOME uses D-Bus to provide communication between the desktop environment
and the programs running in it, and also between GNOME and the operating system. A D-Bus Tube is how
Telepathy makes it possible for an instance of an Activity running on one computer to execute methods in
another instance of the same Activity running on a different computer. Instead of just sending simple text
messages back and forth or doing file transfers, your Activities can be truly shared. That is, your Activity can
allow many people to work on the same task together.

I have never written an Activity that uses D-Bus Tubes myself, but many others have. We're going to take a
look at code from two of them: Scribble by Sayamindu Dasgupta and Batalla Naval, by Gerard J. Cerchio
and AndrÃ©s Ambrois, which was written for the Ceibal Jam.

Scribble is a drawing program that allows many people to work on the same drawing at the same time.
Instead of allowing you to choose what colors you will draw with, it uses the background and foreground
colors of your Buddy icon (the XO stick figure) to draw with. That way, with many people drawing shapes
it's easy to know who drew what. If you join the Activity in progress Scribble will update your screen so your
drawing matches everyone else's screen. Scribble in action looks like this:

Using D-Bus Tubes 105

Batalla Naval is a version of the classic game Battleship. Each player has two grids: one for placing his own
ships (actually the computer places the ships for you) and another blank grid representing the area where your
opponent's ships are. You can't see his ships and he can't see yours. You click on the opponent's grid (on the
right) to indicate where you want to aim an artillery shell. When you do the corresponding square will light
up in both your grid and your opponent's own ship grid. If the square you picked corresponds to a square
where your opponent has placed a ship that square will show up in a different color. The object is to find the
squares containing your opponent's ships before he finds yours. The game in action looks like this:

I suggest that you download the latest code for these two Activities from Gitorious using these commands:

mkdir scribble
cd scribble
git clone git://git.sugarlabs.org/scribble/mainline.git
cd ..
mkdir batallanaval
cd batallanaval

Using D-Bus Tubes 106

git clone git://git.sugarlabs.org/batalla-naval/mainline.git

You'll need to do some setup work to get these running in sugar-emulator. Scribble requires the goocanvas
GTK component and the Python bindings that go with it. These were not installed by default in Fedora 10 but
I was able to install them using Add/Remove Programs from the System menu in GNOME. Batalla Naval is
missing setup.py, but that's easily fixed since every setup.py is identical. Copy the one from the book
examples into the mainline/BatallaNaval.activity directory and run ./setup.py dev on both Activities.

These Activities use different strategies for collaboration. Scribble creates lines of Python code which it
passes to all Buddies and the Buddies use exec to run the commands. This is the code used for drawing a
circle:

 def process_item_finalize(self, x, y):
 if self.tool == 'circle':
 self.cmd = "goocanvas.Ellipse(
 parent=self._root,
 center_x=%d,
 center_y=%d, radius_x = %d,
 radius_y = %d,
 fill_color_rgba = %d,
 stroke_color_rgba = %d,
 title = '%s')" % (self.item.props.center_x,
 self.item.props.center_y,
 self.item.props.radius_x,
 self.item.props.radius_y,
 self._fill_color,
 self._stroke_color, self.item_id)
...

 def process_cmd(self, cmd):
 #print 'Processing cmd :' + cmd
 exec(cmd)
 #FIXME: Ugly hack, but I'm too lazy to
 # do this nicely

 if len(self.cmd_list) > 0:
 self.cmd_list += (';' + cmd)
 else:
 self.cmd_list = cmd

The cmd_list variable is used to create a long string containing all of the commands executed so far. When a
new Buddy joins the Activity she is sent this variable to execute so that her drawing area has the same
contents as the other Buddies have.

This is an interesting approach but you could do the same thing with the TextChannel so it isn't the best use of
D-Bus Tubes. Batalla Naval's use of D-Bus is more typical.

How D-Bus Tubes Work, More Or Less

D-Bus enables you to have two running programs send messages to each other. The programs have to be
running on the same computer. Sending a message is sort of a roundabout way of having one program run
code in another. A program defines the kind of messages it is willing to receive and act on. In the case of
Batalla Naval it defines a message "tell me what square you want to fire a shell at and I'll figure out if part of
one of my ships is in that square and tell you." The first program doesn't actually run code in the second one,
but the end result is similar. D-Bus Tubes is a way of making D-Bus able to send messages like this to a
program running on another computer.

Think for a minute about how you might make a program on one computer run code in a running program on
a different computer. You'd have to use the network, of course. Everyone is familiar with sending data over a

How D-Bus Tubes Work, More Or Less 107

network, but in this case you would have to send program code over the network. You would need to be able
to tell the running program on the second computer what code you wanted it to run. You would have to send
it a method call and all the parameters you needed to pass into the method, and you'd need a way to get a
return value back.

Isn't that kind of like what Scribble is doing in the code we just looked at? Maybe we could make our code
do something like that?

Of course if you did that then every program you wanted to run code in remotely would have to be written to
deal with that. If you had a bunch of programs you wanted to do that with you'd have to have some way of
letting the programs know which requests were meant for it. It would be nice if there was a program running
on each machine that dealt with making the network connections, converting method calls to data that could
be sent over the network and then converting the data back into method calls and running them, plus sending
any return values back. This program should be able to know which program you wanted to run code in and
see that the method call is run there. The program should run all the time, and it would be really good if it
made running a method on a remote program as simple as running a method in my own program.

As you might guess, what I've just described is more or less what D-Bus Tubes are. There are articles
explaining how it works in detail but it is not necessary to know how it works to use it. You do need to know
about a few things, though. First, you need to know how to use D-Bus Tubes to make objects in your Activity
available for use by other instances of that Activity running elsewhere.

An Activity that needs to use D-Bus Tubes needs to define what sorts of messages it is willing to act on, in
effect what specific methods in in the program are available for this use. All Activities that use D-Bus Tubes
have constants like this:

SERVICE = "org.randomink.sayamindu.Scribble"
IFACE = SERVICE
PATH = "/org/randomink/sayamindu/Scribble"

These are the constants used for the Scribble Activity. The first constant, named SERVICE, represents the
bus name of the Activity. This is also called a well-known name because it uses a reversed domain name
as part of the name. In this case Sayamindu Dasgupta has a website at http://sayamindu.randomink.org so he
reverses the dot-separated words of that URL to create the first part of his bus name. It is not necessary to
own a domain name before you can create a bus name. You can use org.sugarlabs.ActivityName if you like.
The point is that the bus name must be unique, and by convention this is made easier by starting with a
reversed domain name.

The PATH constant represents the object path. It looks like the bus name with slashes separating the words
rather than periods. For most Activities that is exactly what it should be, but it is possible for an application to
expose more than one object to D-Bus and in that case each object exposed would have its own unique name,
by convention words separated by slashes.

The third constant is IFACE, which is the interface name. An interface is a collection of related methods and
signals, identified by a name that uses the same convention used by the bus name. In the example above, and
probably in most Activities using a D-Bus Tube, the interface name and the bus name are identical.

So what is a signal? A signal is like a method but instead of one running program calling a method in one
other running program, a signal is broadcast. In other words, instead of executing a method in just one
program it executes the same method in many running programs, in fact in every running program that has
that method that it is connected to through the D-Bus. A signal can pass data into a method call but it can't
receive anything back as a return value. It's like a radio station that broadcasts music to anyone that is tuned
in. The flow of information is one way only.

How D-Bus Tubes Work, More Or Less 108

http://sayamindu.randomink.org

Of course a radio station often receives phone calls from its listeners. A disc jockey might play a new song
and invite listeners to call the station and say what they thought about it. The phone call is two way
communication between the disc jockey and the listener, but it was initiated by a request that was broadcast to
all listeners. In the same way your Activity might use a signal to invite all listeners (Buddies) to use a method
to call it back, and that method can both supply and receive information.

In D-Bus methods and signals have signatures. A signature is a description of the parameters passed into a
method or signal including its data types. Python is not a strongly typed language. In a strongly typed
language every variable has a data type that limits what it can do. Data types include such things as strings,
integers, long integers, floating point numbers, booleans, etc. Each one can be used for a specific purpose
only. For instance a boolean can only hold the values True and False, nothing else. A string can be used to
hold strings of characters, but even if those characters represent a number you cannot use a string for
calculations. Instead you need to convert the string into one of the numeric data types. An integer can hold
integers up to a certain size, and a long integer can hold much larger integers, A floating point number is a
number with a decimal point in scientific notation. It is almost useless for business arithmetic, which requires
rounded results.

In Python you can put anything into any variable and the language itself will figure out how to deal with it.
To make Python work with D-Bus, which requires strongly typed variables that Python doesn't have, you need
a way to tell D-Bus what types the variables you pass into a method should have. You do this by using a
signature string as an argument to the method or signal. Methods have two strings: an in_signature and an
out_signature. Signals just have a signature parameter. Some examples of signature strings:

ii Two parameters, both integers
sss Three parameters, all strings
ixd Three parameters, an integer, a long integer, and a double precision floating point number.
a(ssiii) An array where each element of the array is a tuple containing two strings and three integers.
There is more information on signature strings in the dbus-python tutorial at
http://dbus.freedesktop.org/doc/dbus-python/doc/tutorial.html.

Introducing Hello Mesh And Friends

If you study the source code of a few shared Activities you'll conclude that many of them contain nearly
identical methods, as if they were all copied from the same source. In fact, more likely than not they were.
The Activity Hello Mesh was created to be an example of how to use D-Bus Tubes in a shared Activity. It is
traditional in programming textbooks to have the first example program be something that just prints the
words "Hello World" to the console or displays the same words in a window. In that tradition Hello Mesh is
a program that doesn't do all that much. You can find the code in Gitorious at
http://git.sugarlabs.org/projects/hello-mesh.

Hello Mesh is widely copied because it demonstrates how to do things that all shared Activities need to do.
When you have a shared Activity you need to be able to do two things:

Send information or commands to other instances of your Activity.•
Give Buddies joining your Activity a copy of the current state of the Activity.•

It does this using two signals and one method:

A signal called Hello() that someone joining the Activity sends to all participants. The Hello()
method takes no parameters.

•

A method called World() which instances of the Activity receiving Hello() send back to the sender.
This method takes a text string as an argument, which is meant to represent the current state of the
Activity.

•

Introducing Hello Mesh And Friends 109

http://dbus.freedesktop.org/doc/dbus-python/doc/tutorial.html
http://git.sugarlabs.org/projects/hello-mesh

Another signal called SendText() which sends a text string to all participants. This represents
updating the state of the shared Activity. In the case of Scribble this would be informing the others
that this instance has just drawn a new shape.

•

Rather than study Hello Mesh itself I'd like to look at the code derived from it used in Batalla Naval. I have
taken the liberty of running the comments, originally in Spanish, through Google Translate to make
everything in English. I have also removed some commented-out lines of code.

This Activity does something clever to make it possible to run it either as a Sugar Activity or as a standalone
Python program. The standalone program does not support sharing at all, and it runs in a Window. The class
Activity is a subclass of Window, so when the code is run standalone the init() function in BatallaNaval.py
gets a Window, and when the same code is run as an Activity the instance of class BatallaNavalActivity is
passed to init():

from sugar.activity.activity import Activity, ActivityToolbox
import BatallaNaval
from Collaboration import CollaborationWrapper

class BatallaNavalActivity(Activity):
 ''' The Sugar class called when you run this
 program as an Activity. The name of this
 class file is marked in the
 activity/activity.info file.'''

 def __init__(self, handle):
 Activity.__init__(self, handle)

 self.gamename = 'BatallaNaval'

 # Create the basic Sugar toolbar
 toolbox = ActivityToolbox(self)
 self.set_toolbox(toolbox)
 toolbox.show()

 # Create an instance of the CollaborationWrapper
 # so you can share the activity.
 self.colaboracion = CollaborationWrapper(self)

 # The activity is a subclass of Window, so it
 # passses itself to the init function
 BatallaNaval.init(False, self)

The other clever thing going on here is that all the collaboration code is placed in its own
CollaborationWrapper class which takes the instance of the BatallNavalActivity class in its constructor.
This separates the collaboration code from the rest of the program. Here is the code in
CollaborationWrapper.py:

import logging

from sugar.presence import presenceservice
import telepathy
from dbus.service import method, signal
In build 656 Sugar lacks sugartubeconn
try:
 from sugar.presence.sugartubeconn import \
 SugarTubeConnection
except:
 from sugar.presence.tubeconn import TubeConnection as \
 SugarTubeConnection
from dbus.gobject_service import ExportedGObject

''' In all collaborative Activities in Sugar we are

Introducing Hello Mesh And Friends 110

 made aware when a player enters or leaves. So that
 everyone knows the state of the Activity we use
 the methods Hello and World. When a participant
 enters Hello sends a signal that reaches
 all participants and the participants
 respond directly using the method "World",
 which retrieves the current state of the Activity.
 After the updates are given then the signal
 Play is used by each participant to make his move.
 In short this module encapsulates the logic of
 "collaboration" with the following effect:
 - When someone enters the collaboration
 the Hello signal is sent.
 - Whoever receives the Hello signal responds
 with World
 - Every time someone makes a move he uses
 the method Play giving a signal which
 communicates to each participant
 what his move was.
'''

SERVICE = "org.ceibaljam.BatallaNaval"
IFACE = SERVICE
PATH = "/org/ceibaljam/BatallaNaval"

logger = logging.getLogger('BatallaNaval')
logger.setLevel(logging.DEBUG)

class CollaborationWrapper(ExportedGObject):
 ''' A wrapper for the collaboration methods.
 Get the activity and the necessary callbacks.
 '''

 def __init__(self, activity):
 self.activity = activity
 self.presence_service = \
 presenceservice.get_instance()
 self.owner = \
 self.presence_service.get_owner()

 def set_up(self, buddy_joined_cb, buddy_left_cb,
 World_cb, Play_cb, my_boats):
 self.activity.connect('shared',
 self._shared_cb)
 if self.activity._shared_activity:
 # We are joining the activity
 self.activity.connect('joined',
 self._joined_cb)
 if self.activity.get_shared():
 # We've already joined
 self._joined_cb()

 self.buddy_joined = buddy_joined_cb
 self.buddy_left = buddy_left_cb
 self.World_cb = World_cb
 # Called when someone passes the board state.
 self.Play_cb = Play_cb
 # Called when someone makes a move.

 # Submitted by making World on a new partner
 self.my_boats = [(b.nombre, b.orientacion,
 b.largo, b.pos[0],
 b.pos[1]) for b in my_boats]
 self.world = False
 self.entered = False

 def _shared_cb(self, activity):

Introducing Hello Mesh And Friends 111

 self._sharing_setup()
 self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 OfferDBusTube(
 SERVICE, {})
 self.is_initiator = True

 def _joined_cb(self, activity):
 self._sharing_setup()
 self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 ListTubes(
 reply_handler=self._list_tubes_reply_cb,
 error_handler=self._list_tubes_error_cb)
 self.is_initiator = False

 def _sharing_setup(self):
 if self.activity._shared_activity is None:
 logger.error(
 'Failed to share or join activity')
 return

 self.conn = \
 self.activity._shared_activity.telepathy_conn
 self.tubes_chan = \
 self.activity._shared_activity.telepathy_tubes_chan
 self.text_chan = \
 self.activity._shared_activity.telepathy_text_chan

 self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 connect_to_signal(
 'NewTube', self._new_tube_cb)

 self.activity._shared_activity.connect(
 'buddy-joined',
 self._buddy_joined_cb)
 self.activity._shared_activity.connect(
 'buddy-left',
 self._buddy_left_cb)

 # Optional - included for example:
 # Find out who's already in the shared activity:
 for buddy in \
 self.activity._shared_activity.\
 get_joined_buddies():
 logger.debug(
 'Buddy %s is already in the activity',
 buddy.props.nick)

 def participant_change_cb(self, added, removed):
 logger.debug(
 'Tube: Added participants: %r', added)
 logger.debug(
 'Tube: Removed participants: %r', removed)
 for handle, bus_name in added:
 buddy = self._get_buddy(handle)
 if buddy is not None:
 logger.debug(
 'Tube: Handle %u (Buddy %s) was added',
 handle, buddy.props.nick)
 for handle in removed:
 buddy = self._get_buddy(handle)
 if buddy is not None:
 logger.debug('Buddy %s was removed' %
 buddy.props.nick)
 if not self.entered:
 if self.is_initiator:
 logger.debug(
 "I'm initiating the tube, "

Introducing Hello Mesh And Friends 112

 "will watch for hellos.")
 self.add_hello_handler()
 else:
 logger.debug(
 'Hello, everyone! What did I miss?')
 self.Hello()
 self.entered = True

 # This is sent to all participants whenever we
 # join an activity
 @signal(dbus_interface=IFACE, signature='')
 def Hello(self):
 """Say Hello to whoever else is in the tube."""
 logger.debug('I said Hello.')

 # This is called by whoever receives our Hello signal
 # This method receives the current game state and
 # puts us in sync with the rest of the participants.
 # The current game state is represented by the
 # game object
 @method(dbus_interface=IFACE, in_signature='a(ssiii)',
 out_signature='a(ssiii)')
 def World(self, boats):
 """To be called on the incoming XO after
 they Hello."""
 if not self.world:
 logger.debug('Somebody called World on me')
 self.world = True # Instead of loading
 # the world, I am
 # receiving play by
 # play.
 self.World_cb(boats)
 # now I can World others
 self.add_hello_handler()
 else:
 self.world = True
 logger.debug(
 "I've already been welcomed, doing nothing")
 return self.my_boats

 @signal(dbus_interface=IFACE, signature='ii')
 def Play(self, x, y):
 """Say Hello to whoever else is in the tube."""
 logger.debug('Running remote play:%s x %s.', x, y)

 def add_hello_handler(self):
 logger.debug('Adding hello handler.')
 self.tube.add_signal_receiver(self.hello_signal_cb,
 'Hello', IFACE,
 path=PATH, sender_keyword='sender')
 self.tube.add_signal_receiver(self.play_signal_cb,
 'Play', IFACE,
 path=PATH, sender_keyword='sender')

 def hello_signal_cb(self, sender=None):
 """Somebody Helloed me. World them."""
 if sender == self.tube.get_unique_name():
 # sender is my bus name, so ignore my own signal
 return
 logger.debug('Newcomer %s has joined', sender)
 logger.debug(
 'Welcoming newcomer and sending them '
 'the game state')

 self.other = sender

Introducing Hello Mesh And Friends 113

 # I send my ships and I get theirs in return
 enemy_boats = self.tube.get_object(self.other,
 PATH).World(
 self.my_boats, dbus_interface=IFACE)

 # I call the callback World, to load the enemy ships
 self.World_cb(enemy_boats)

 def play_signal_cb(self, x, y, sender=None):
 """Somebody placed a stone. """
 if sender == self.tube.get_unique_name():
 return # sender is my bus name,
 # so ignore my own signal
 logger.debug('Buddy %s placed a stone at %s x %s',
 sender, x, y)
 # Call our Play callback
 self.Play_cb(x, y)
 # In theory, no matter who sent him

 def _list_tubes_error_cb(self, e):
 logger.error('ListTubes() failed: %s', e)

 def _list_tubes_reply_cb(self, tubes):
 for tube_info in tubes:
 self._new_tube_cb(*tube_info)

 def _new_tube_cb(self, id, initiator, type,
 service, params, state):
 logger.debug('New tube: ID=%d initator=%d '
 'type=%d service=%s '
 'params=%r state=%d', id, initiator, '
 'type, service, params, state)
 if (type == telepathy.TUBE_TYPE_DBUS and
 service == SERVICE):
 if state == telepathy.TUBE_STATE_LOCAL_PENDING:
 self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES]
 .AcceptDBusTube(id)
 self.tube = SugarTubeConnection(self.conn,
 self.tubes_chan[telepathy.CHANNEL_TYPE_TUBES],
 id, group_iface=
 self.text_chan[telepathy.\
 CHANNEL_INTERFACE_GROUP])
 super(CollaborationWrapper,
 self).__init__(self.tube, PATH)
 self.tube.watch_participants(
 self.participant_change_cb)

 def _buddy_joined_cb (self, activity, buddy):
 """Called when a buddy joins the shared
 activity. """
 logger.debug(
 'Buddy %s joined', buddy.props.nick)
 if self.buddy_joined:
 self.buddy_joined(buddy)

 def _buddy_left_cb (self, activity, buddy):
 """Called when a buddy leaves the shared
 activity. """
 if self.buddy_left:
 self.buddy_left(buddy)

 def _get_buddy(self, cs_handle):
 """Get a Buddy from a channel specific handle."""
 logger.debug('Trying to find owner of handle %u...',
 cs_handle)
 group = self.text_chan[telepathy.\
 CHANNEL_INTERFACE_GROUP]

Introducing Hello Mesh And Friends 114

 my_csh = group.GetSelfHandle()
 logger.debug(
 'My handle in that group is %u', my_csh)
 if my_csh == cs_handle:
 handle = self.conn.GetSelfHandle()
 logger.debug('CS handle %u belongs to me, %u',
 cs_handle, handle)
 elif group.GetGroupFlags() & \
 telepathy.\
 CHANNEL_GROUP_FLAG_CHANNEL_SPECIFIC_HANDLES:
 handle = group.GetHandleOwners([cs_handle])[0]
 logger.debug('CS handle %u belongs to %u',
 cs_handle, handle)
 else:
 handle = cs_handle
 logger.debug('non-CS handle %u belongs to itself',
 handle)
 # XXX: deal with failure to get the handle owner
 assert handle != 0
 return self.presence_service.\
 get_buddy_by_telepathy_handle(
 self.conn.service_name,
 self.conn.object_path, handle)

Most of the code above is similar to what we've seen in the other examples, and most of it can be used as is in
any Activity that needs to make D-Bus calls. For this reason we'll focus on the code that is specific to using
D-Bus. The logical place to start is the Hello() method. There is of course nothing magic about the name
"Hello". Hello Mesh is meant to be a "Hello World" program for using D-Bus Tubes, so by convention the
words "Hello" and "World" had to be used for something. The Hello() method is broadcast to all instances of
the Activity to inform them that a new instance is ready to receive information about the current state of the
shared Activity. Your own Activity will probably need something similar, but you should feel free to name it
something else, and if you're writing the code for a school assignment you should definitely name it
something else:

 # This is sent to all participants whenever we
 # join an activity
 @signal(dbus_interface=IFACE, signature='')
 def Hello(self):
 """Say Hello to whoever else is in the tube."""
 logger.debug('I said Hello.')

 def add_hello_handler(self):
 logger.debug('Adding hello handler.')
 self.tube.add_signal_receiver(
 self.hello_signal_cb,
 'Hello', IFACE,
 path=PATH, sender_keyword='sender')
...

 def hello_signal_cb(self, sender=None):
 """Somebody Helloed me. World them."""
 if sender == self.tube.get_unique_name():
 # sender is my bus name,
 # so ignore my own signal
 return
 logger.debug('Newcomer %s has joined', sender)
 logger.debug(
 'Welcoming newcomer and sending them '
 'the game state')

 self.other = sender

 # I send my ships and I returned theirs
 enemy_boats = self.tube.get_object(

Introducing Hello Mesh And Friends 115

 self.other, PATH).World(
 self.my_boats, dbus_interface=IFACE)

 # I call the callback World, to load the enemy ships
 self.World_cb(enemy_boats)

 The most interesting thing about this code is this line, which Python calls a Decorator:

 @signal(dbus_interface=IFACE, signature='')

When you put @signal in front of a method name it has the effect of adding the two parameters shown to the
method call whenever it is invoked, in effect changing it from a normal method call to a D-Bus call for a
signal. The signature parameter is an empty string, indicating that the method call has no parameters. The
Hello() method does nothing at all locally but when it is received by the other instances of the Activity it
causes them to execute the World() method, which sends back the location of their boats and gets the new
participants boats in return.

Batalla Naval is apparently meant to be a demonstration program. Battleship is a game for two players, but
there is nothing in the code to prevent more players from joining and no way to handle it if they do. Ideally
you would want code to make only the first joiner an actual player and make the rest only spectators.

Next we'll look at the World() method:

 # This is called by whoever receives our Hello signal
 # This method receives the current game state and
 # puts us in sync with the rest of the participants.
 # The current game state is represented by the game
 # object
 @method(dbus_interface=IFACE, in_signature='a(ssiii)',
 out_signature='a(ssiii)')
 def World(self, boats):
 """To be called on the incoming XO after
 they Hello."""
 if not self.world:
 logger.debug('Somebody called World on me')
 self.world = True # Instead of loading the world,
 # I am receiving play by play.
 self.World_cb(boats)
 # now I can World others
 self.add_hello_handler()
 else:
 self.world = True
 logger.debug("I've already been welcomed, "
 "doing nothing")
 return self.my_boats

There is another decorator here, this one converting the World() method to a D-Bus call for a method. The
signature is more interesting than Hello() had. It means an array of tuples where each tuple contains two
strings and three integers. Each element in the array represents one ship and its attributes. World_cb is set to
point to a method in BatallaNaval.py, (and so is Play_cb). If you study the init() code in BatallaNaval.py
you'll see how this happens. World() is called in the hello_signal_cb() method we just looked at. It is sent to
the joiner who sent Hello() to us.

Finally we'll look at the Play() signal:

 @signal(dbus_interface=IFACE, signature='ii')
 def Play(self, x, y):
 """Say Hello to whoever else is in the tube."""
 logger.debug('Running remote play:%s x %s.', x, y)

 def add_hello_handler(self):

Introducing Hello Mesh And Friends 116

...
 self.tube.add_signal_receiver(self.play_signal_cb,
 'Play', IFACE,
 path=PATH, sender_keyword='sender')
...
 def play_signal_cb(self, x, y, sender=None):
 """Somebody placed a stone. """
 if sender == self.tube.get_unique_name():
 return # sender is my bus name, so
 # ignore my own signal
 logger.debug('Buddy %s placed a stone at %s x %s',
 sender, x, y)
 # Call our Play callback
 self.Play_cb(x, y)

This is a signal so there is only one signature string, this one indicating that the input parameters are two
integers.

There are several ways you could improve this Activity. When playing against the computer in non-sharing
mode the game just makes random moves. The game does not limit the players to two and make the rest of
the joiners spectators. It does not make the players take turns. When a player succeeds in sinking all the other
players ships nothing happens to mark the event. Finally, gettext() is not used for the text strings displayed by
the Activity so it cannot be translated into languages other than Spanish.

In the tradition of textbooks everywhere I will leave making these improvements as an exercise for the
student.

Introducing Hello Mesh And Friends 117

Adding Text To Speech

Introduction

Certainly one of the most popular Activities available is Speak, which takes the words you type in and speaks
them out loud, at the same time displaying a cartoon face that seems to be speaking the words. You might be
surprised to learn how little of the code in that Activity is used to get the words spoken. If your Activity
could benefit from having words spoken out loud (the possibilities for educational Activities and games are
definitely there) this chapter will teach you how to make it happen.

We Have Ways To Make You Talk

A couple of ways, actually, and neither one is that painful. They are:

Running the espeak program directly•
Using the gstreamer espeak plugin•

Both approaches have their advantages. The first one is the one used by Speak. (Technically, Speak uses the
gstreamer plugin if it is available, and otherwise executes espeak directly. For what Speak is doing using the
gstreamer plugin isn't really needed). Executing espeak is definitely the simplest method, and may be suitable
for your own Activity. Its big advantage is that you do not need to have the gstreamer plugin installed. If
your Activity needs to run on something other than the latest version of Sugar this will be something to
consider.

The gstreamer plugin is what is used by Read Etexts to do text to speech with highlighting. For this
application we needed to be able to do things that are not possible by just running espeak. For example:

We needed to be able to pause and resume speech, because the Activity needs to speak a whole page
worth of text, not just simple phrases.

•

We needed to highlight the words being spoken as they are spoken.•

Adding Text To Speech 118

You might think that you could achieve these objectives by running espeak on one word at a time. If you do,
don't feel bad because I thought that too. On a fast computer it sounds really awful, like HAL 9000
developing a stutter towards the end of being deactivated. On the XO no sounds came out at all.

Originally Read Etexts used speech-dispatcher to do what the gstreamer plugin does. The developers of that
program were very helpful in getting the highlighting in Read Etexts working, but speech-dispatcher needed
to be configured before you could use it which was an issue for us. (There is more than one kind of text to
speech software available and speech-dispatcher supports most of them. This makes configuration files
inevitable). Aleksey Lim of Sugar Labs came up with the idea of using a gstreamer plugin and was the one
who wrote it. He also rewrote much of Read Etexts so it would use the plugin if it was available, use
speech-dispatcher if not, and would not support speech if neither was available.

Running espeak Directly

You can run the espeak program from the terminal to try out its options. To see what options are available for
espeak you can use the man command:

man espeak

This will give you a manual page describing how to run the program and what options are available. The
parts of the man page that are most interesting to us are these:

NAME
 espeak - A multi-lingual software speech synthesizer.

SYNOPSIS
 espeak [options] [<words>]

DESCRIPTION
 espeak is a software speech synthesizer for English,
 and some other languages.

OPTIONS
 -p <integer>
 Pitch adjustment, 0 to 99, default is 50

 -s <integer>
 Speed in words per minute, default is 160

 -v <voice name>
 Use voice file of this name from
 espeak-data/voices

 --voices[=<language code>]
 Lists the available voices. If =<language code>
 is present then only those voices which are
 suitable for that language are listed.

Let's try out some of these options. First let's get a list of Voices:

espeak --voices
Pty Language Age/Gender VoiceName File Other Langs
 5 af M afrikaans af
 5 bs M bosnian bs
 5 ca M catalan ca
 5 cs M czech cs
 5 cy M welsh-test cy
 5 de M german de
 5 el M greek el
 5 en M default default
 5 en-sc M en-scottish en/en-sc (en 4)

We Have Ways To Make You Talk 119

 2 en-uk M english en/en (en 2)
... and many more ...

Now that we know what the names of the voices are we can try them out. How about English with a French
accent?

espeak "Your mother was a hamster and your father \
smelled of elderberries." -v fr

Let's try experimenting with rate and pitch:

espeak "I'm sorry, Dave. I'm afraid I can't \
do that." -s 120 -p 30

The next thing to do is to write some Python code to run espeak. Here is a short program adapted from the
code in Speak:

import re
import subprocess

PITCH_MAX = 99
RATE_MAX = 99
PITCH_DEFAULT = PITCH_MAX/2
RATE_DEFAULT = RATE_MAX/3

def speak(text, rate=RATE_DEFAULT, pitch=PITCH_DEFAULT,
 voice="default"):

 # espeak uses 80 to 370
 rate = 80 + (370-80) * int(rate) / 100

 subprocess.call(["espeak", "-p", str(pitch),
 "-s", str(rate), "-v", voice, text],
 stdout=subprocess.PIPE)

def voices():
 out = []
 result = subprocess.Popen(["espeak", "--voices"],
 stdout=subprocess.PIPE).communicate()[0]

 for line in result.split('\n'):
 m = re.match(
 r'\s*\d+\s+([\w-]+)\s+([MF])\s+([\w_-]+)\s+(.+)',
 line)
 if not m:
 continue
 language, gender, name, stuff = m.groups()
 if stuff.startswith('mb/') or \
 name in ('en-rhotic','english_rp',
 'english_wmids'):
 # these voices don't produce sound
 continue
 out.append((language, name))

 return out

def main():
 print voices()
 speak("I'm afraid I can't do that, Dave.")
 speak("Your mother was a hamster, and your father "
 + "smelled of elderberries!", 30, 60, "fr")

if __name__ == "__main__":
 main()

Running espeak Directly 120

In the Git repository in the directory Adding_TTS this file is named espeak.py. Load this file into Eric and
do Run Script from the Start menu to run it. In addition to hearing speech you should see this text:

[('af', 'afrikaans'), ('bs', 'bosnian'), ('ca', 'catalan'), ('cs', 'czech'), ('cy', 'welsh-test'), ('de', 'german'), ('el',
'greek'), ('en', 'default'), ('en-sc', 'en-scottish'), ('en-uk', 'english'), ('en-uk-north', 'lancashire'), ('en-us',
'english-us'), ('en-wi', 'en-westindies'), ('eo', 'esperanto'), ('es', 'spanish'), ('es-la', 'spanish-latin-american'),
('fi', 'finnish'), ('fr', 'french'), ('fr-be', 'french'), ('grc', 'greek-ancient'), ('hi', 'hindi-test'), ('hr', 'croatian'), ('hu',
'hungarian'), ('hy', 'armenian'), ('hy', 'armenian-west'), ('id', 'indonesian-test'), ('is', 'icelandic-test'), ('it',
'italian'), ('ku', 'kurdish'), ('la', 'latin'), ('lv', 'latvian'), ('mk', 'macedonian-test'), ('nl', 'dutch-test'), ('no',
'norwegian-test'), ('pl', 'polish'), ('pt', 'brazil'), ('pt-pt', 'portugal'), ('ro', 'romanian'), ('ru', 'russian_test'), ('sk',
'slovak'), ('sq', 'albanian'), ('sr', 'serbian'), ('sv', 'swedish'), ('sw', 'swahihi-test'), ('ta', 'tamil'), ('tr', 'turkish'),
('vi', 'vietnam-test'), ('zh', 'Mandarin'), ('zh-yue', 'cantonese-test')]

The voices() function returns a list of voices as one tuple per voice, and eliminates voices from the list that
espeak cannot produce on its own. This list of tuples can be used to populate a drop down list.

The speak() function adjusts the value of rate so you can input a value between 0 and 99 rather than between
80 to 370. speak() is more complex in the Speak Activity than what we have here because in that Activity it
monitors the spoken audio and generates mouth movements based on the amplitude of the voice. Making the
face move is most of what the Speak Activity does, and since we aren't doing that we need very little code to
make our Activity speak.

You can use import espeak to include this file in your own Activities.

Using The gstreamer espeak Plugin

The gstreamer espeak plugin can be installed in Fedora 10 or later using Add/Remove Software.

When you have this done you should be able to download the Read Etexts Activity (the real one, not the
simplified version we're using for the book) from ASLO and try out the Speech tab. You should do that now.
It will look something like this:

Using The gstreamer espeak Plugin 121

The book used in the earlier screenshots of this manual was Pride and Prejudice by Jane Austen. To balance
things out the rest of the screen shots will be using The Innocents Abroad by Mark Twain.

Gstreamer is a framework for multimedia. If you've watched videos on the web you are familiar with the
concept of streaming media. Instead of downloading a whole song or a whole movie clip and then playing it,
streaming means the downloading and the playing happen at the same time, with the downloading just a bit
behind the playing. There are many different kinds of media files: MP3's, DivX, WMV, Real Media, and so
on. For every kind of media file Gstreamer has a plugin.

Gstreamer makes use of a concept called pipelining. The idea is that the output of one program can become
the input to another. One way to handle that situation is to put the output of the first program into a temporary
file and have the second program read it. This would mean that the first program would have to finish
running before the second one could begin. What if you could have both programs run at the same time and
have the second program read the data as the first one wrote it out? It's possible, and the mechanism for
getting data from one program to the other is called a pipe. A collection of programs joined together in this
way is called a pipeline. The program that feeds data into a pipe is called a source, and the data that takes the
data out of the pipe is called a sink.

The gstreamer espeak plugin uses a simple pipe: text goes into espeak at one end and sound comes out the
other and is sent to your soundcard. You might think that doesn't sound much different from what we were
doing before, but it is. When you just run espeak the program has to load itself into memory, speak the text
you give it into the sound card, then unload itself. This is one of the reasons you can't just use espeak a word
at a time to achieve speech with highlighted words. There is a short lag while the program is loading. It isn't
that noticeable if you give espeak a complete phrase or sentence to speak, but if it happens for every word it is
very noticeable. Using the gstreamer plugin we can have espeak loaded into memory all the time, just waiting
for us to send some words into its input pipe. It will speak them and then wait for the next batch.

Since we can control what goes into the pipe it is possible to pause and resume speech.

The example we'll use here is a version of Read Etexts again, but instead of the Activity we're going to
modify the standalone version. There is nothing special about the gstreamer plugin that makes it only work
with Activities. Any Python program can use it. I'm only including Text to Speech as a topic in this manual
because every Sugar installation includes espeak and many Activities could find it useful.

There is a in our Git repository named speech.py which looks like this:

Using The gstreamer espeak Plugin 122

import gst

voice = 'default'
pitch = 0

rate = -20
highlight_cb = None

def _create_pipe():
 pipeline = 'espeak name=source ! autoaudiosink'
 pipe = gst.parse_launch(pipeline)

 def stop_cb(bus, message):
 pipe.set_state(gst.STATE_NULL)

 def mark_cb(bus, message):
 if message.structure.get_name() == 'espeak-mark':
 mark = message.structure['mark']
 highlight_cb(int(mark))

 bus = pipe.get_bus()
 bus.add_signal_watch()
 bus.connect('message::eos', stop_cb)
 bus.connect('message::error', stop_cb)
 bus.connect('message::element', mark_cb)

 return (pipe.get_by_name('source'), pipe)

def _speech(source, pipe, words):
 source.props.pitch = pitch
 source.props.rate = rate
 source.props.voice = voice
 source.props.text = words;
 pipe.set_state(gst.STATE_PLAYING)

info_source, info_pipe = _create_pipe()
play_source, play_pipe = _create_pipe()

track for marks
play_source.props.track = 2

def voices():
 return info_source.props.voices

def say(words):
 _speech(info_source, info_pipe, words)
 print words

def play(words):
 _speech(play_source, play_pipe, words)

def is_stopped():
 for i in play_pipe.get_state():
 if isinstance(i, gst.State) and \
 i == gst.STATE_NULL:
 return True
 return False

def stop():
 play_pipe.set_state(gst.STATE_NULL)

def is_paused():
 for i in play_pipe.get_state():
 if isinstance(i, gst.State) and \
 i == gst.STATE_PAUSED:
 return True
 return False

Using The gstreamer espeak Plugin 123

def pause():
 play_pipe.set_state(gst.STATE_PAUSED)

def rate_up():
 global rate
 rate = min(99, rate + 10)

def rate_down():
 global rate
 rate = max(-99, rate - 10)

def pitch_up():
 global pitch
 pitch = min(99, pitch + 10)

def pitch_down():
 global pitch
 pitch = max(-99, pitch - 10)

def prepare_highlighting(label_text):
 i = 0
 j = 0
 word_begin = 0
 word_end = 0
 current_word = 0
 word_tuples = []
 omitted = [' ', '\n', u'\r', '_', '[', '{', ']',\
 '}', '|', '<', '>', '*', '+', '/', '\\']
 omitted_chars = set(omitted)
 while i < len(label_text):
 if label_text[i] not in omitted_chars:
 word_begin = i
 j = i
 while j < len(label_text) and \
 label_text[j] not in omitted_chars:
 j = j + 1
 word_end = j
 i = j
 word_t = (word_begin, word_end, \
 label_text[word_begin: word_end].strip())
 if word_t[2] != u'\r':
 word_tuples.append(word_t)
 i = i + 1
 return word_tuples

def add_word_marks(word_tuples):
 "Adds a mark between each word of text."
 i = 0
 marked_up_text = '<speak> '
 while i < len(word_tuples):
 word_t = word_tuples[i]
 marked_up_text = marked_up_text + \
 '<mark name="' + str(i) + '"/>' + word_t[2]
 i = i + 1
 return marked_up_text + '</speak>'

There is another file named ReadEtextsTTS.py which looks like this:

import sys
import os
import zipfile
import pygtk
import gtk
import getopt
import pango

Using The gstreamer espeak Plugin 124

import gobject
import time
import speech

speech_supported = True

try:
 import gst
 gst.element_factory_make('espeak')
 print 'speech supported!'
except Exception, e:
 speech_supported = False
 print 'speech not supported!'

page=0
PAGE_SIZE = 45

class ReadEtextsActivity():
 def __init__(self):
 "The entry point to the Activity"
 speech.highlight_cb = self.highlight_next_word
 # print speech.voices()

 def highlight_next_word(self, word_count):
 if word_count <â�� len(self.word_tuples):
 word_tuple = self.word_tuples[word_count]
 textbuffer = self.textview.get_buffer()
 tag = textbuffer.create_tag()
 tag.set_property('weight', pango.WEIGHT_BOLD)
 tag.set_property('foreground', "white")
 tag.set_property('background', "black")
 iterStart = \
 textbuffer.get_iter_at_offset(word_tuple[0])
 iterEnd = \
 textbuffer.get_iter_at_offset(word_tuple[1])
 bounds = textbuffer.get_bounds()
 textbuffer.remove_all_tags(bounds[0], bounds[1])
 textbuffer.apply_tag(tag, iterStart, iterEnd)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 max = v_adjustment.upper - \
 v_adjustment.page_size
 max = max * word_count
 max = max / len(self.word_tuples)
 v_adjustment.value = max
 return True

 def keypress_cb(self, widget, event):
 "Respond when the user presses one of the arrow keys"
 global done
 global speech_supported
 keyname = gtk.gdk.keyval_name(event.keyval)
 if keyname == 'KP_End' and speech_supported:
 if speech.is_paused() or speech.is_stopped():
 speech.play(self.words_on_page)
 else:
 speech.pause()
 return True
 if keyname == 'plus':
 self.font_increase()
 return True
 if keyname == 'minus':
 self.font_decrease()
 return True
 if speech_supported and speech.is_stopped() == False \
 and speech.is_paused == False:
 # If speech is in progress, ignore other keys.

Using The gstreamer espeak Plugin 125

 return True
 if keyname == '7':
 speech.pitch_down()
 speech.say('Pitch Adjusted')
 return True
 if keyname == '8':
 speech.pitch_up()
 speech.say('Pitch Adjusted')
 return True
 if keyname == '9':
 speech.rate_down()
 speech.say('Rate Adjusted')
 return True
 if keyname == '0':
 speech.rate_up()
 speech.say('Rate Adjusted')
 return True
 if keyname == 'KP_Right':
 self.page_next()
 return True
 if keyname == 'Page_Up' or keyname == 'KP_Up':
 self.page_previous()
 return True
 if keyname == 'KP_Left':
 self.page_previous()
 return True
 if keyname == 'Page_Down' or keyname == 'KP_Down':
 self.page_next()
 return True
 if keyname == 'Up':
 self.scroll_up()
 return True
 if keyname == 'Down':
 self.scroll_down()
 return True
 return False

 def page_previous(self):
 global page
 page=page-1
 if page < 0: page=0
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.upper - \
 v_adjustment.page_size

 def page_next(self):
 global page
 page=page+1
 if page >= len(self.page_index): page=0
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.lower

 def font_decrease(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size - 1
 if font_size < 1:
 font_size = 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def font_increase(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size + 1

Using The gstreamer espeak Plugin 126

 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def scroll_down(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.upper - \
 v_adjustment.page_size:
 self.page_next()
 return
 if v_adjustment.value < v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.value + \
 v_adjustment.step_increment
 if new_value > v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.upper - \
 v_adjustment.page_size
 v_adjustment.value = new_value

 def scroll_up(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.lower:
 self.page_previous()
 return
 if v_adjustment.value > v_adjustment.lower:
 new_value = v_adjustment.value - \
 v_adjustment.step_increment
 if new_value < v_adjustment.lower:
 new_value = v_adjustment.lower
 v_adjustment.value = new_value

 def show_page(self, page_number):
 global PAGE_SIZE, current_word
 position = self.page_index[page_number]
 self.etext_file.seek(position)
 linecount = 0
 label_text = ''
 textbuffer = self.textview.get_buffer()
 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + \
 unicode(line, 'iso-8859-1')
 linecount = linecount + 1
 textbuffer.set_text(label_text)
 self.textview.set_buffer(textbuffer)
 self.word_tuples = \
 speech.prepare_highlighting(label_text)
 self.words_on_page = \
 speech.add_word_marks(self.word_tuples)

 def save_extracted_file(self, zipfile, filename):
 "Extract the file to a temp directory for viewing"
 filebytes = zipfile.read(filename)
 f = open("/tmp/" + filename, 'w')
 try:
 f.write(filebytes)
 finally:
 f.close()

 def read_file(self, filename):
 "Read the Etext file"
 global PAGE_SIZE

 if zipfile.is_zipfile(filename):
 self.zf = zipfile.ZipFile(filename, 'r')

Using The gstreamer espeak Plugin 127

 self.book_files = self.zf.namelist()
 self.save_extracted_file(self.zf, \
 self.book_files[0])
 currentFileName = "/tmp/" + self.book_files[0]
 else:
 currentFileName = filename

 self.etext_file = open(currentFileName,"r")
 self.page_index = [0]
 linecount = 0
 while self.etext_file:
 line = self.etext_file.readline()
 if not line:
 break
 linecount = linecount + 1
 if linecount >= PAGE_SIZE:
 position = self.etext_file.tell()
 self.page_index.append(position)
 linecount = 0
 if filename.endswith(".zip"):
 os.remove(currentFileName)

 def delete_cb(self, widget, event, data=None):
 speech.stop()
 return False

 def destroy_cb(self, widget, data=None):
 speech.stop()
 gtk.main_quit()

 def main(self, file_path):
 self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)
 self.window.connect("delete_event", self.delete_cb)
 self.window.connect("destroy", self.destroy_cb)
 self.window.set_title("Read Etexts Activity")
 self.window.set_size_request(800, 600)
 self.window.set_border_width(0)
 self.read_file(file_path)
 self.scrolled_window = gtk.ScrolledWindow(
 hadjustment=None, vadjustment=None)
 self.textview = gtk.TextView()
 self.textview.set_editable(False)
 self.textview.set_left_margin(50)
 self.textview.set_cursor_visible(False)
 self.textview.connect("key_press_event",
 self.keypress_cb)
 self.font_desc = pango.FontDescription("sans 12")
 self.textview.modify_font(self.font_desc)
 self.show_page(0)
 self.scrolled_window.add(self.textview)
 self.window.add(self.scrolled_window)
 self.textview.show()
 self.scrolled_window.show()
 self.window.show()
 gtk.main()

if __name__ == "__main__":
 try:
 opts, args = getopt.getopt(sys.argv[1:], "")
 ReadEtextsActivity().main(args[0])
 except getopt.error, msg:
 print msg
 print "This program has no options"
 sys.exit(2)

Using The gstreamer espeak Plugin 128

The program ReadEtextsTTS has only a few changes to make it enabled for speech. The first one checks for
the existence of the gstreamer plugin:

speech_supported = True

try:
 import gst
 gst.element_factory_make('espeak')
 print 'speech supported!'
except Exception, e:
 speech_supported = False
 print 'speech not supported!'

This code detects whether the plugin is installed by attempting to import for the Python library associated with
it named "gst". If the import fails it throws an Exception and we catch that Exception and use it to set a
variable named speech_supported to False. We can check the value of this variable in other places in the
program to make a program that works with Text To Speech if it is available and without it if it is not.
Making a program work in different environments by doing these kinds of checks is called degrading
gracefully. Catching exceptions on imports is a common technique in Python to achieve this. If you want
your Activity to run on older versions of Sugar you may find yourself using it.

The next bit of code we're going to look at highlights a word in the textview and scrolls the textview to keep
the highlighted word visible.

class ReadEtextsActivity():
 def __init__(self):
 "The entry point to the Activity"
 speech.highlight_cb = self.highlight_next_word
 # print speech.voices()

 def highlight_next_word(self, word_count):
 if word_count < len(self.word_tuples):
 word_tuple = self.word_tuples[word_count]
 textbuffer = self.textview.get_buffer()
 tag = textbuffer.create_tag()
 tag.set_property('weight', pango.WEIGHT_BOLD)
 tag.set_property('foreground', "white")
 tag.set_property('background', "black")
 iterStart = \
 textbuffer.get_iter_at_offset(word_tuple[0])
 iterEnd = \
 textbuffer.get_iter_at_offset(word_tuple[1])
 bounds = textbuffer.get_bounds()
 textbuffer.remove_all_tags(bounds[0], bounds[1])
 textbuffer.apply_tag(tag, iterStart, iterEnd)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 max = v_adjustment.upper - v_adjustment.page_size
 max = max * word_count
 max = max / len(self.word_tuples)
 v_adjustment.value = max
 return True

In the __init__() method we assign a variable called highlight_cb in speech.py with a method called
highlight_next_word(). This gives speech.py a way to call that method every time a new word in the textview
needs to be highlighted.

The next line will print the list of tuples containing Voice names to the terminal if you uncomment it. We
aren't letting the user change voices in this application but it would not be difficult to add that feature.

Using The gstreamer espeak Plugin 129

The code for the method that highlights the words follows. What it does is look in a list of tuples that contain
the starting and ending offsets of every word in the textarea's text buffer. The caller of this method passes in a
word number (for instance the first word in the buffer is word 0, the second is word 1, and so on). The
method looks up that entry in the list, gets its starting and ending offsets, removes any previous highlighting,
then highlights the new text. In addition to that it figures out what fraction of the total number of words the
current word is and scrolls the textviewer enough to make sure that word is visible.

Of course this method works best on pages without many blank lines, which fortunately is most pages. It does
not work so well on title pages. An experienced programmer could probably come up with a more elegant
and reliable way of doing this scrolling. Let me know what you come up with.

Further down we see the code that gets the keystrokes the user enters and does speech-related things with
them:

 def keypress_cb(self, widget, event):
 "Respond when the user presses one of the arrow keys"
 global done
 global speech_supported
 keyname = gtk.gdk.keyval_name(event.keyval)
 if keyname == 'KP_End' and speech_supported:
 if speech.is_paused() or speech.is_stopped():
 speech.play(self.words_on_page)
 else:
 speech.pause()
 return True
 if speech_supported and speech.is_stopped() == False \
 and speech.is_paused == False:
 # If speech is in progress, ignore other keys.
 return True
 if keyname == '7':
 speech.pitch_down()
 speech.say('Pitch Adjusted')
 return True
 if keyname == '8':
 speech.pitch_up()
 speech.say('Pitch Adjusted')
 return True
 if keyname == '9':
 speech.rate_down()
 speech.say('Rate Adjusted')
 return True
 if keyname == '0':
 speech.rate_up()
 speech.say('Rate Adjusted')
 return True

As you can see, the functions we're calling are all in the file speech.py that we imported. You don't have to
fully understand how these functions work to make use of them in your own Activities. Notice that the code
as written prevents the user from changing pitch or rate while speech is in progress. Notice also that there are
two different methods in speech.py for doing speech. play() is the method for doing text to speech with word
highlighting. say() is for saying short phrases produced by the user interface, in this case "Pitch adjusted" and
"Rate adjusted". Of course if you put code like this in your Activity you would use the _() function so these
phrases could be translated into other languages.

There is one more bit of code we need to do text to speech with highlighting: we need to prepare the words to
be spoken to be highlighted in the textviewer.

 def show_page(self, page_number):
 global PAGE_SIZE, current_word
 position = self.page_index[page_number]
 self.etext_file.seek(position)

Using The gstreamer espeak Plugin 130

 linecount = 0
 label_text = ''
 textbuffer = self.textview.get_buffer()
 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + unicode(line, \
 'iso-8859-1')
 linecount = linecount + 1
 textbuffer.set_text(label_text)
 self.textview.set_buffer(textbuffer)
 self.word_tuples = \
 speech.prepare_highlighting(label_text)
 self.words_on_page = \
 speech.add_word_marks(self.word_tuples)

The beginning of this method reads a page's worth of text into a string called label_text and puts it into the
textview's buffer. The last two lines splits the text into words, leaving in punctuation, and puts each word and
its beginning and ending offsets into a tuple. The tuples are added to a List.

speech.add_word_marks() converts the words in the List to a document in SSML (Speech Synthesis Markup
Language) format. SSML is a standard for adding tags (sort of like the tags used to make web pages) to text
to tell speech software what to do with the text. We're just using a very small part of this standard to produce
a marked up document with a mark between each word, like this:

<speak>
 <mark name="0"/>The<mark name="1"/>quick<mark name-"2"/>
 brown<mark name="3"/>fox<mark name="4"/>jumps
</speak>

When espeak reads this file it will do a callback into our program every time it reads one of the mark tags.
The callback will contain the number of the word in the word_tuples List which it will get from the name
attribute of the mark tag. In this way the method being called will know which word to highlight. The
advantage of using the mark name rather than just highlighting the next word in the textviewer is that if
espeak should fail to do one of the callbacks the highlighting won't be thrown out of sync. This was a
problem with speech-dispatcher.

A callback is just what it sounds like. When one program calls another program it can pass in a function or
method of its own that it wants the second program to call when something happens.

To try out the new program run

./ReadEtextsTTS.py bookfile

from the Terminal. You can adjust pitch and rate up and down using the keys 7, 8, 9, and 0 on the top row of
the keyboard. It should say "Pitch Adjusted" or "Rate Adjusted" when you do that. You can start, pause, and
resume speech with highlighting by using the End key on the keypad. (On the XO laptop the "game" keys are
mapped to what is the numeric keypad on a normal keyboard. This makes these keys handy for use when the
XO is folded into tablet mode and the keyboard is not available). You cannot change pitch or rate while
speech is in progress. Attempts to do that will be ignored. The program in action looks like this:

Using The gstreamer espeak Plugin 131

That brings us to the end of the topic of Text to Speech. If you're like to see more, the Git repository for this
book has a few more sample programs that use the gstreamer espeak plugin. These examples were created by
the author of the plugin and demonstrate some other ways you can use it. There's even a "choir" program that
demonstrates multiple voices speaking at the same time.

Using The gstreamer espeak Plugin 132

Fun With The Journal

Introduction

By default every Activity creates and reads one Journal entry. Most Activities don't need to do any more with
the Journal than that, and if your Activity is like that you won't need the information in this chapter. Chances
are that someday you will want to do more than that, so if you do keep reading.

First let's review what the Journal is. The Journal is a collection of files that each have metadata (data about
data) associated with them. Metadata is stored as text strings and includes such things as the Title,
Description, Tags, MIME Type, and a screen shot of the Activity when it was last used.

Your Activity cannot read and write these files directly. Instead Sugar provides an API (Application
Programming Interface) that gives you an indirect way to add, delete and modify entries in the Journal, as well
as a way to search Journal entries and make a list of entries that meet the search criteria.

The API we'll use is in the datastore package. After version .82 of Sugar this API was rewritten, so we'll
need to learn how to support both versions in the same Activity.

If you've read this far you've seen several examples where Sugar started out doing one thing and then changed
to do the same thing a better way but still provided a way to create Activities that would work with either the
old or the new way. You may be wondering if it is normal for a project to do this. As a professional
programmer I can tell you that doing tricks like this to maintain backward compatibility is extremely
common, and Sugar does no more of this than any other project. There are decisions made by Herman
Hollerith when he tabulated the 1890 census using punched cards that computer programmers must live with
to this day.

Introducing Sugar Commander

I am a big fan of the concept of the Journal but not so much of the Journal Activity that Sugar uses to
navigate through it and maintain it. My biggest gripe against it is that it represents the contents of thumb
drives and SD cards as if the files on these were also Journal entries. My feeling is that files and directories
are one thing and the Journal is another, and the user interface should recognize that.

Strictly speaking the Journal Activity is and is not an Activity. It inherits code from the Activity class just
like any other Activity, and it is written in Python and uses the same datastore API that other Activities use.
However, it is run in a special way that gives it powers and abilities far beyond those of an ordinary Activity.
In particular it can do two things:

It can write to files on external media like thumb drives and SD cards.•
It alone can be used to resume Journal entries using other Activities.•

While I would like to write a Journal Activity that does everything the original does but has a user interface
more to my own taste the Sugar security model won't allow that. Recently I came to the conclusion that a
more mild-mannered version of the Journal Activity might be useful. Just as Kal-El sometimes finds it more
useful to be Clark Kent than Superman, my own Activity might be a worthy alternative to the built-in Journal
Activity when super powers are not needed.

My Activity, which I call Sugar Commander, has two tabs. One represents the Journal and looks like this:

Fun With The Journal 133

This tab lets you browse through the Journal sorted by Title or MIME Type, select entries and view their
details, update Title, Description or Tags, and delete entries you no longer want. The other tab shows files
and folders and looks like this:

This tab lets you browse through the files and folders or the regular file system, including thumb drives and
SD cards. You can select a file and make a Journal entry out of it by pushing the button at the bottom of the
screen.

 This Activity has very little code and still manages to do everything an ordinary Activity can do with the
Journal. You can download the Git repository using this command:

git clone git://git.sugarlabs.org/sugar-commander/\
mainline.git

Introducing Sugar Commander 134

There is only one source file, sugarcommander.py:

import logging
import os
import gtk
import pango
import zipfile
from sugar import mime
from sugar.activity import activity
from sugar.datastore import datastore
from sugar.graphics.alert import NotifyAlert
from sugar.graphics import style
from gettext import gettext as _
import gobject
import dbus

COLUMN_TITLE = 0
COLUMN_MIME = 1
COLUMN_JOBJECT = 2

DS_DBUS_SERVICE = 'org.laptop.sugar.DataStore'
DS_DBUS_INTERFACE = 'org.laptop.sugar.DataStore'
DS_DBUS_PATH = '/org/laptop/sugar/DataStore'

_logger = logging.getLogger('sugar-commander')

class SugarCommander(activity.Activity):
 def __init__(self, handle, create_jobject=True):
 "The entry point to the Activity"
 activity.Activity.__init__(self, handle, False)
 self.selected_journal_entry = None
 self.selected_path = None

 canvas = gtk.Notebook()
 canvas.props.show_border = True
 canvas.props.show_tabs = True
 canvas.show()

 self.ls_journal = gtk.ListStore(
 gobject.TYPE_STRING,
 gobject.TYPE_STRING,
 gobject.TYPE_PYOBJECT)
 self.tv_journal = gtk.TreeView(self.ls_journal)
 self.tv_journal.set_rules_hint(True)
 self.tv_journal.set_search_column(COLUMN_TITLE)
 self.selection_journal = \
 self.tv_journal.get_selection()
 self.selection_journal.set_mode(
 gtk.SELECTION_SINGLE)
 self.selection_journal.connect("changed",
 self.selection_journal_cb)
 renderer = gtk.CellRendererText()
 renderer.set_property('wrap-mode', gtk.WRAP_WORD)
 renderer.set_property('wrap-width', 500)
 renderer.set_property('width', 500)
 self.col_journal = gtk.TreeViewColumn(_('Title'),
 renderer, text=COLUMN_TITLE)
 self.col_journal.set_sort_column_id(COLUMN_TITLE)
 self.tv_journal.append_column(self.col_journal)

 mime_renderer = gtk.CellRendererText()
 mime_renderer.set_property('width', 500)
 self.col_mime = gtk.TreeViewColumn(_('MIME'),
 mime_renderer, text=COLUMN_MIME)
 self.col_mime.set_sort_column_id(COLUMN_MIME)
 self.tv_journal.append_column(self.col_mime)

Introducing Sugar Commander 135

 self.list_scroller_journal = gtk.ScrolledWindow(
 hadjustment=None, vadjustment=None)
 self.list_scroller_journal.set_policy(
 gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)
 self.list_scroller_journal.add(self.tv_journal)

 label_attributes = pango.AttrList()
 label_attributes.insert(pango.AttrSize(
 14000, 0, -1))
 label_attributes.insert(pango.AttrForeground(
 65535, 65535, 65535, 0, -1))

 tab1_label = gtk.Label(_("Journal"))
 tab1_label.set_attributes(label_attributes)
 tab1_label.show()
 self.tv_journal.show()
 self.list_scroller_journal.show()

 column_table = gtk.Table(rows=1, columns=2,
 homogeneous = False)

 image_table = gtk.Table(rows=2, columns=2,
 homogeneous=False)
 self.image = gtk.Image()
 image_table.attach(self.image, 0, 2, 0, 1,
 xoptions=gtk.FILL|gtk.SHRINK,
 yoptions=gtk.FILL|gtk.SHRINK,
 xpadding=10,
 ypadding=10)

 self.btn_save = gtk.Button(_("Save"))
 self.btn_save.connect('button_press_event',
 self.save_button_press_event_cb)
 image_table.attach(self.btn_save, 0, 1, 1, 2,
 xoptions=gtk.SHRINK,
 yoptions=gtk.SHRINK, xpadding=10,
 ypadding=10)
 self.btn_save.props.sensitive = False
 self.btn_save.show()

 self.btn_delete = gtk.Button(_("Delete"))
 self.btn_delete.connect('button_press_event',
 self.delete_button_press_event_cb)
 image_table.attach(self.btn_delete, 1, 2, 1, 2,
 xoptions=gtk.SHRINK,
 yoptions=gtk.SHRINK, xpadding=10,
 ypadding=10)
 self.btn_delete.props.sensitive = False
 self.btn_delete.show()

 column_table.attach(image_table, 0, 1, 0, 1,
 xoptions=gtk.FILL|gtk.SHRINK,
 yoptions=gtk.SHRINK, xpadding=10,
 ypadding=10)

 entry_table = gtk.Table(rows=3, columns=2,
 homogeneous=False)

 title_label = gtk.Label(_("Title"))
 entry_table.attach(title_label, 0, 1, 0, 1,
 xoptions=gtk.SHRINK,
 yoptions=gtk.SHRINK,
 xpadding=10, ypadding=10)
 title_label.show()

 self.title_entry = gtk.Entry(max=0)

Introducing Sugar Commander 136

 entry_table.attach(self.title_entry, 1, 2, 0, 1,
 xoptions=gtk.FILL|gtk.SHRINK,
 yoptions=gtk.SHRINK, xpadding=10, ypadding=10)
 self.title_entry.connect('key_press_event',
 self.key_press_event_cb)
 self.title_entry.show()

 description_label = gtk.Label(_("Description"))
 entry_table.attach(description_label, 0, 1, 1, 2,
 xoptions=gtk.SHRINK,
 yoptions=gtk.SHRINK,
 xpadding=10, ypadding=10)
 description_label.show()

 self.description_textview = gtk.TextView()
 self.description_textview.set_wrap_mode(
 gtk.WRAP_WORD)
 entry_table.attach(self.description_textview,
 1, 2, 1, 2,
 xoptions=gtk.EXPAND|gtk.FILL|gtk.SHRINK,
 yoptions=gtk.EXPAND|gtk.FILL|gtk.SHRINK,
 xpadding=10, ypadding=10)
 self.description_textview.props.accepts_tab = False
 self.description_textview.connect('key_press_event',
 self.key_press_event_cb)
 self.description_textview.show()

 tags_label = gtk.Label(_("Tags"))
 entry_table.attach(tags_label, 0, 1, 2, 3,
 xoptions=gtk.SHRINK,
 yoptions=gtk.SHRINK,
 xpadding=10, ypadding=10)
 tags_label.show()

 self.tags_textview = gtk.TextView()
 self.tags_textview.set_wrap_mode(gtk.WRAP_WORD)
 entry_table.attach(self.tags_textview, 1, 2, 2, 3,
 xoptions=gtk.FILL,
 yoptions=gtk.EXPAND|gtk.FILL,
 xpadding=10, ypadding=10)
 self.tags_textview.props.accepts_tab = False
 self.tags_textview.connect('key_press_event',
 self.key_press_event_cb)
 self.tags_textview.show()

 entry_table.show()

 self.scroller_entry = gtk.ScrolledWindow(
 hadjustment=None, vadjustment=None)
 self.scroller_entry.set_policy(gtk.POLICY_NEVER,
 gtk.POLICY_AUTOMATIC)
 self.scroller_entry.add_with_viewport(entry_table)
 self.scroller_entry.show()

 column_table.attach(self.scroller_entry,
 1, 2, 0, 1,
 xoptions=gtk.FILL|gtk.EXPAND|gtk.SHRINK,
 yoptions=gtk.FILL|gtk.EXPAND|gtk.SHRINK,
 xpadding=10, ypadding=10)
 image_table.show()
 column_table.show()

 vbox = gtk.VBox(homogeneous=True, spacing=5)
 vbox.pack_start(column_table)
 vbox.pack_end(self.list_scroller_journal)

 canvas.append_page(vbox, tab1_label)

Introducing Sugar Commander 137

 self._filechooser = gtk.FileChooserWidget(
 action=gtk.FILE_CHOOSER_ACTION_OPEN,
 backend=None)
 self._filechooser.set_current_folder("/media")
 self.copy_button = gtk.Button(
 _("Copy File To The Journal"))
 self.copy_button.connect('clicked',
 self.create_journal_entry)
 self.copy_button.show()
 self._filechooser.set_extra_widget(self.copy_button)
 preview = gtk.Image()
 self._filechooser.set_preview_widget(preview)
 self._filechooser.connect("update-preview",
 self.update_preview_cb, preview)
 tab2_label = gtk.Label(_("Files"))
 tab2_label.set_attributes(label_attributes)
 tab2_label.show()
 canvas.append_page(self._filechooser, tab2_label)

 self.set_canvas(canvas)
 self.show_all()

 toolbox = activity.ActivityToolbox(self)
 activity_toolbar = toolbox.get_activity_toolbar()
 activity_toolbar.keep.props.visible = False
 activity_toolbar.share.props.visible = False
 self.set_toolbox(toolbox)
 toolbox.show()

 self.load_journal_table()

 bus = dbus.SessionBus()
 remote_object = bus.get_object(
 DS_DBUS_SERVICE, DS_DBUS_PATH)
 _datastore = dbus.Interface(remote_object,
 DS_DBUS_INTERFACE)
 _datastore.connect_to_signal('Created',
 self.datastore_created_cb)
 _datastore.connect_to_signal('Updated',
 self.datastore_updated_cb)
 _datastore.connect_to_signal('Deleted',
 self.datastore_deleted_cb)

 self.selected_journal_entry = None

 def update_preview_cb(self, file_chooser, preview):
 filename = file_chooser.get_preview_filename()
 try:
 file_mimetype = mime.get_for_file(filename)
 if file_mimetype.startswith('image/'):
 pixbuf = \
 gtk.gdk.pixbuf_new_from_file_at_size(
 filename,
 style.zoom(320), style.zoom(240))
 preview.set_from_pixbuf(pixbuf)
 have_preview = True
 elif file_mimetype == 'application/x-cbz':
 fname = self.extract_image(filename)
 pixbuf = \
 gtk.gdk.pixbuf_new_from_file_at_size(
 fname,
 style.zoom(320), style.zoom(240))
 preview.set_from_pixbuf(pixbuf)
 have_preview = True
 os.remove(fname)
 else:

Introducing Sugar Commander 138

 have_preview = False
 except:
 have_preview = False
 file_chooser.set_preview_widget_active(
 have_preview)
 return

 def key_press_event_cb(self, entry, event):
 self.btn_save.props.sensitive = True

 def save_button_press_event_cb(self, entry, event):
 self.update_entry()

 def delete_button_press_event_cb(self, entry, event):
 datastore.delete(
 self.selected_journal_entry.object_id)

 def datastore_created_cb(self, uid):
 new_jobject = datastore.get(uid)
 iter = self.ls_journal.append()
 title = new_jobject.metadata['title']
 self.ls_journal.set(iter, COLUMN_TITLE, title)
 mime = new_jobject.metadata['mime_type']
 self.ls_journal.set(iter, COLUMN_MIME, mime)
 self.ls_journal.set(iter, COLUMN_JOBJECT,
 new_jobject)

 def datastore_updated_cb(self, uid):
 new_jobject = datastore.get(uid)
 iter = self.ls_journal.get_iter_first()
 for row in self.ls_journal:
 jobject = row[COLUMN_JOBJECT]
 if jobject.object_id == uid:
 title = new_jobject.metadata['title']
 self.ls_journal.set_value(iter,
 COLUMN_TITLE, title)
 break
 iter = self.ls_journal.iter_next(iter)
 object_id = self.selected_journal_entry.object_id
 if object_id == uid:
 self.set_form_fields(new_jobject)

 def datastore_deleted_cb(self, uid):
 save_path = self.selected_path
 iter = self.ls_journal.get_iter_first()
 for row in self.ls_journal:
 jobject = row[COLUMN_JOBJECT]
 if jobject.object_id == uid:
 self.ls_journal.remove(iter)
 break
 iter = self.ls_journal.iter_next(iter)

 try:
 self.selection_journal.select_path(save_path)
 self.tv_journal.grab_focus()
 except:
 self.title_entry.set_text('')
 description_textbuffer = \
 self.description_textview.get_buffer()
 description_textbuffer.set_text('')
 tags_textbuffer = \
 self.tags_textview.get_buffer()
 tags_textbuffer.set_text('')
 self.btn_save.props.sensitive = False
 self.btn_delete.props.sensitive = False
 self.image.clear()
 self.image.show()

Introducing Sugar Commander 139

 def update_entry(self):
 needs_update = False

 if self.selected_journal_entry is None:
 return

 object_id = self.selected_journal_entry.object_id
 jobject = datastore.get(object_id)

 old_title = jobject.metadata.get('title', None)
 if old_title != self.title_entry.props.text:
 jobject.metadata['title'] = \
 self.title_entry.props.text
 jobject.metadata['title_set_by_user'] = '1'
 needs_update = True

 old_tags = jobject.metadata.get('tags', None)
 new_tags = \
 self.tags_textview.props.buffer.props.text
 if old_tags != new_tags:
 jobject.metadata['tags'] = new_tags
 needs_update = True

 old_description = jobject.metadata.get(
 'description', None)
 new_description = \
 self.description_textview.props.buffer.props.text
 if old_description != new_description:
 jobject.metadata['description'] = new_description
 needs_update = True

 if needs_update:
 datastore.write(jobject, update_mtime=False,
 reply_handler=self.datastore_write_cb,
 error_handler=self.datastore_write_error_cb)
 self.btn_save.props.sensitive = False

 def datastore_write_cb(self):
 pass

 def datastore_write_error_cb(self, error):
 logging.error(
 'sugarcommander.datastore_write_error_cb:'
 ' %r' % error)

 def close(self, skip_save=False):
 "Override the close method so we don't try to
 create a Journal entry."
 activity.Activity.close(self, True)

 def selection_journal_cb(self, selection):
 self.btn_delete.props.sensitive = True
 tv = selection.get_tree_view()
 model = tv.get_model()
 sel = selection.get_selected()
 if sel:
 model, iter = sel
 jobject = model.get_value(iter,COLUMN_JOBJECT)
 jobject = datastore.get(jobject.object_id)
 self.selected_journal_entry = jobject
 self.set_form_fields(jobject)
 self.selected_path = model.get_path(iter)

 def set_form_fields(self, jobject):
 self.title_entry.set_text(jobject.metadata['title'])
 description_textbuffer = \

Introducing Sugar Commander 140

 self.description_textview.get_buffer()
 if jobject.metadata.has_key('description'):
 description_textbuffer.set_text(
 jobject.metadata['description'])
 else:
 description_textbuffer.set_text('')
 tags_textbuffer = self.tags_textview.get_buffer()
 if jobject.metadata.has_key('tags'):
 tags_textbuffer.set_text(jobject.metadata['tags'])
 else:
 tags_textbuffer.set_text('')
 self.create_preview(jobject.object_id)

 def create_preview(self, object_id):
 jobject = datastore.get(object_id)

 if jobject.metadata.has_key('preview'):
 preview = jobject.metadata['preview']
 if preview is None or preview == '' \
 or preview == 'None':
 if jobject.metadata['mime_type'].startswith(
 'image/'):
 filename = jobject.get_file_path()
 self.show_image(filename)
 return
 if jobject.metadata['mime_type'] == \
 'application/x-cbz':
 filename = jobject.get_file_path()
 fname = self.extract_image(filename)
 self.show_image(fname)
 os.remove(fname)
 return

 if jobject.metadata.has_key('preview') and \
 len(jobject.metadata['preview']) > 4:

 if jobject.metadata['preview'][1:4] == 'PNG':
 preview_data = jobject.metadata['preview']
 else:
 import base64
 preview_data = \
 base64.b64decode(
 jobject.metadata['preview'])

 loader = gtk.gdk.PixbufLoader()
 loader.write(preview_data)
 scaled_buf = loader.get_pixbuf()
 loader.close()
 self.image.set_from_pixbuf(scaled_buf)
 self.image.show()
 else:
 self.image.clear()
 self.image.show()

 def load_journal_table(self):
 self.btn_save.props.sensitive = False
 self.btn_delete.props.sensitive = False
 ds_mounts = datastore.mounts()
 mountpoint_id = None
 if len(ds_mounts) == 1 and \
 ds_mounts[0]['id'] == 1:
 pass
 else:
 for mountpoint in ds_mounts:
 id = mountpoint['id']
 uri = mountpoint['uri']
 if uri.startswith('/home'):

Introducing Sugar Commander 141

 mountpoint_id = id

 query = {}
 if mountpoint_id is not None:
 query['mountpoints'] = [mountpoint_id]
 ds_objects, num_objects = \
 datastore.find(query, properties=['uid',
 'title', 'mime_type'])

 self.ls_journal.clear()
 for i in xrange (0, num_objects, 1):
 iter = self.ls_journal.append()
 title = ds_objects[i].metadata['title']
 self.ls_journal.set(iter, COLUMN_TITLE, title)
 mime = ds_objects[i].metadata['mime_type']
 self.ls_journal.set(iter, COLUMN_MIME, mime)
 self.ls_journal.set(iter, COLUMN_JOBJECT,
 ds_objects[i])
 if not self.selected_journal_entry is None and \
 self.selected_journal_entry.object_id == \
 ds_objects[i].object_id:
 self.selection_journal.select_iter(iter)

 self.ls_journal.set_sort_column_id(COLUMN_TITLE,
 gtk.SORT_ASCENDING)
 v_adjustment = \
 self.list_scroller_journal.get_vadjustment()
 v_adjustment.value = 0
 return ds_objects[0]

 def create_journal_entry(self, widget, data=None):
 filename = self._filechooser.get_filename()
 journal_entry = datastore.create()
 journal_entry.metadata['title'] = \
 self.make_new_filename(filename)
 journal_entry.metadata['title_set_by_user'] = '1'
 journal_entry.metadata['keep'] = '0'
 file_mimetype = mime.get_for_file(filename)
 if not file_mimetype is None:
 journal_entry.metadata['mime_type'] = \
 file_mimetype
 journal_entry.metadata['buddies'] = ''
 if file_mimetype.startswith('image/'):
 preview = \
 self.create_preview_metadata(filename)
 elif file_mimetype == 'application/x-cbz':
 fname = self.extract_image(filename)
 preview = self.create_preview_metadata(fname)
 os.remove(fname)
 else:
 preview = ''
 if not preview == '':
 journal_entry.metadata['preview'] = \
 dbus.ByteArray(preview)
 else:
 journal_entry.metadata['preview'] = ''

 journal_entry.file_path = filename
 datastore.write(journal_entry)
 self.alert(_('Success'), _('%s added to Journal.')
 % self.make_new_filename(filename))

 def alert(self, title, text=None):
 alert = NotifyAlert(timeout=20)
 alert.props.title = title
 alert.props.msg = text
 self.add_alert(alert)

Introducing Sugar Commander 142

 alert.connect('response', self.alert_cancel_cb)
 alert.show()

 def alert_cancel_cb(self, alert, response_id):
 self.remove_alert(alert)

 def show_image(self, filename):
 "display a resized image in a preview"
 scaled_buf = gtk.gdk.pixbuf_new_from_file_at_size(
 filename,
 style.zoom(320), style.zoom(240))
 self.image.set_from_pixbuf(scaled_buf)
 self.image.show()

 def extract_image(self, filename):
 zf = zipfile.ZipFile(filename, 'r')
 image_files = zf.namelist()
 image_files.sort()
 file_to_extract = image_files[0]
 extract_new_filename = self.make_new_filename(
 file_to_extract)
 if extract_new_filename is None or \
 extract_new_filename == '':
 # skip over directory name if the images
 # are in a subdirectory.
 file_to_extract = image_files[1]
 extract_new_filename = self.make_new_filename(
 file_to_extract)

 if len(image_files) > 0:
 if self.save_extracted_file(zf, file_to_extract):
 fname = os.path.join(self.get_activity_root(),
 'instance',
 extract_new_filename)
 return fname

 def save_extracted_file(self, zipfile, filename):
 "Extract the file to a temp directory for viewing"
 try:
 filebytes = zipfile.read(filename)
 except zipfile.BadZipfile, err:
 print 'Error opening the zip file: %s' % (err)
 return False
 except KeyError, err:
 self.alert('Key Error', 'Zipfile key not found: '
 + str(filename))
 return
 outfn = self.make_new_filename(filename)
 if (outfn == ''):
 return False
 fname = os.path.join(self.get_activity_root(),
 'instance', outfn)
 f = open(fname, 'w')
 try:
 f.write(filebytes)
 finally:
 f.close()
 return True

 def make_new_filename(self, filename):
 partition_tuple = filename.rpartition('/')
 return partition_tuple[2]

 def create_preview_metadata(self, filename):

 file_mimetype = mime.get_for_file(filename)
 if not file_mimetype.startswith('image/'):

Introducing Sugar Commander 143

 return ''

 scaled_pixbuf = \
 gtk.gdk.pixbuf_new_from_file_at_size(
 filename,
 style.zoom(320), style.zoom(240))
 preview_data = []

 def save_func(buf, data):
 data.append(buf)

 scaled_pixbuf.save_to_callback(save_func,
 'png',
 user_data=preview_data)
 preview_data = ''.join(preview_data)

 return preview_data

Let's look at this code one method at a time.

Adding A Journal Entry

We add a Journal entry when someone pushes a button on the gtk.FileChooser. This is the code that gets run:

 def create_journal_entry(self, widget, data=None):
 filename = self._filechooser.get_filename()
 journal_entry = datastore.create()
 journal_entry.metadata['title'] = \
 self.make_new_filename(
 filename)
 journal_entry.metadata['title_set_by_user'] = '1'
 journal_entry.metadata['keep'] = '0'
 file_mimetype = mime.get_for_file(filename)
 if not file_mimetype is None:
 journal_entry.metadata['mime_type'] = \
 file_mimetype
 journal_entry.metadata['buddies'] = ''
 if file_mimetype.startswith('image/'):
 preview = self.create_preview_metadata(filename)
 elif file_mimetype == 'application/x-cbz':
 fname = self.extract_image(filename)
 preview = self.create_preview_metadata(fname)
 os.remove(fname)
 else:
 preview = ''
 if not preview == '':
 journal_entry.metadata['preview'] = \
 dbus.ByteArray(preview)
 else:
 journal_entry.metadata['preview'] = ''
 journal_entry.file_path = filename
 datastore.write(journal_entry)

The only thing worth commenting on here is the metadata. title is what appears as #3 in the picture below.
title_set_by_user is set to 1 so that the Activity won't prompt the user to change the title when the Activity
closes. keep refers to the little star that appears at the beginning of the Journal entry (see #1 in the picture
below). Highlight it by setting this to 1, otherwise set to 0. buddies is a list of users that collaborated on the
Journal entry, and in this case there aren't any (these show up as #4 in the picture below).

 Adding A Journal Entry 144

preview is an image file in the PNG format that is a screenshot of the Activity in action. This is created by
the Activity itself when it is run so there is no need to make one when you add a Journal entry. You can
simply use an empty string ('') for this property.

Because previews are much more visible in Sugar Commander than they are in the regular Journal Activity I
decided that Sugar Commander should make a preview image for image files and comic books as soon as they
are added to the Journal. To do this I made a pixbuf of the image that would fit within the scaled dimensions
of 320x240 pixels and made a dbus.ByteArray out of it, which is the format that the Journal uses to store
preview images.

mime_type describes the format of the file and is generally assigned based on the filename suffix. For
instance, files ending in .html have a MIME type of 'text/html'. Python has a package called mimetypes that
takes a file name and figures out what its MIME type should be, but Sugar provides its own package to do the
same thing. For most files either one would give the correct answer, but Sugar has its own MIME types for
things like Activity bundles, etc. so for best results you really should use Sugar's mime package. You can
import it like this:

from sugar import mime

The rest of the metadata (icon, modified time) is created automatically.

NOT Adding A Journal Entry

Sugar Activities by default create a Journal entry using the write_file() method. There will be Activities that
don't need to do this. For instance, Get Internet Archive Books downloads e-books to the Journal, but has
no need for a Journal entry of its own. The same thing is true of Sugar Commander. You might make a
game that keeps track of high scores. You could keep those scores in a Journal entry, but that would require
players to resume the game from the Journal rather than just starting it up from the Activity Ring. For that
reason you might prefer to store the high scores in a file in the data directory rather than the Journal, and not
leave a Journal entry behind at all.

Sugar gives you a way to do that. First you need to specify an extra argument in your Activity's __init__()
method like this:

class SugarCommander(activity.Activity):

NOT Adding A Journal Entry 145

 def __init__(self, handle, create_jobject=True):
 "The entry point to the Activity"
 activity.Activity.__init__(self, handle, False)

Second, you need to override the close() method like this:

 def close(self, skip_save=False):
 "Override the close method so we don't try to
 create a Journal entry."
 activity.Activity.close(self, True)

That's all there is to it.

Listing Out Journal Entries

If you need to list out Journal entries you can use the find() method of datastore. The find method takes an
argument containing search criteria. If you want to search for image files you can search by mime-type using
a statement like this:

 ds_objects, num_objects = datastore.find(
 {'mime_type':['image/jpeg',
 'image/gif', 'image/tiff', 'image/png']},
 properties=['uid',
 'title', 'mime_type']))

You can use any metadata attribute to search on. If you want to list out everything in the Journal you can use
an empty search criteria like this:

 ds_objects, num_objects = datastore.find({},
 properties=['uid',
 'title', 'mime_type']))

The properties argument specifies what metadata to return for each object in the list. You should limit these
to what you plan to use, but always include uid. One thing you should never include in a list is preview.
This is an image file showing what the Activity for the Journal object looked like when it was last used. If for
some reason you need this there is a simple way to get it for an individual Journal object, but you never want
to include it in a list because it will slow down your Activity enormously.

Listing out what is in the Journal is complicated because of the datastore rewrite done for Sugar .84. Before
.84 the datastore.find() method listed out both Journal entries and files on external media like thumb drives
and SD cards and you need to figure out which is which. In .84 and later it only lists out Journal entries.
Fortunately it is possible to write code that supports either behavior. Here is code in Sugar Commander that
only lists Journal entries:

 def load_journal_table(self):
 self.btn_save.props.sensitive = False
 self.btn_delete.props.sensitive = False
 ds_mounts = datastore.mounts()
 mountpoint_id = None
 if len(ds_mounts) == 1 and ds_mounts[0]['id'] == 1:
 pass
 else:
 for mountpoint in ds_mounts:
 id = mountpoint['id']
 uri = mountpoint['uri']
 if uri.startswith('/home'):
 mountpoint_id = id

 query = {}
 if mountpoint_id is not None:

Listing Out Journal Entries 146

 query['mountpoints'] = [mountpoint_id]
 ds_objects, num_objects = datastore.find(
 query, properties=['uid',
 'title', 'mime_type'])

 self.ls_journal.clear()
 for i in xrange (0, num_objects, 1):
 iter = self.ls_journal.append()
 title = ds_objects[i].metadata['title']
 self.ls_journal.set(iter,
 COLUMN_TITLE, title)
 mime = ds_objects[i].metadata['mime_type']
 self.ls_journal.set(iter, COLUMN_MIME, mime)
 self.ls_journal.set(iter, COLUMN_JOBJECT,
 ds_objects[i])
 if not self.selected_journal_entry is None and \
 self.selected_journal_entry.object_id == \
 ds_objects[i].object_id:
 self.selection_journal.select_iter(iter)

 self.ls_journal.set_sort_column_id(COLUMN_TITLE,
 gtk.SORT_ASCENDING)
 v_adjustment = \
 self.list_scroller_journal.get_vadjustment()
 v_adjustment.value = 0
 return ds_objects[0]

We need to use the datastore.mounts() method for two purposes:

In Sugar .82 and below it will list out all mount points, including the place the Journal is mounted on
and the places external media is mounted on. The mountpoint is a Python dictionary that contains a
uri property (which is the path to the mount point) and an id property (which is a name given to the
mount point). Every Journal entry has a metadata attribute named mountpoint. The Journal uri will
be the only one starting with /home, so if we limit the search to Journal objects where the id of that
mountpoint equals the mountpoint metadata in the Journal objects we can easily list only objects
from the Journal.

•

In Sugar .84 and later the datastore.mounts() method still exists but doesn't tell you anything about
mountpoints. However, you can use the code above to see if there is only one mountpoint and if its id
is 1. If it is you know you're dealing with the rewritten datastore of .84 and later. The other
difference is that the Journal objects no longer have metadata with a key of mountpoint. If you use
the code above it will account for this difference and work with either version of Sugar.

•

What if you want the Sugar .82 behavior, listing both Journal entries and USB files as Journal objects, in both
.82 and .84 and up? I wanted to do that for View Slides and ended up using this code:

 def load_journal_table(self):
 ds_objects, num_objects = datastore.find(
 {'mime_type':['image/jpeg',
 'image/gif', 'image/tiff', 'image/png']},
 properties=['uid', 'title', 'mime_type'])
 self.ls_right.clear()
 for i in xrange (0, num_objects, 1):
 iter = self.ls_right.append()
 title = ds_objects[i].metadata['title']
 mime_type = ds_objects[i].metadata['mime_type']
 if mime_type == 'image/jpeg' \
 and not title.endswith('.jpg') \
 and not title.endswith('.jpeg') \
 and not title.endswith('.JPG') \
 and not title.endswith('.JPEG') :
 title = title + '.jpg'
 if mime_type == 'image/png' \
 and not title.endswith('.png') \

Listing Out Journal Entries 147

 and not title.endswith('.PNG'):
 title = title + '.png'
 if mime_type == 'image/gif' \
 and not title.endswith('.gif')\
 and not title.endswith('.GIF'):
 title = title + '.gif'
 if mime_type == 'image/tiff' \
 and not title.endswith('.tiff')\
 and not title.endswith('.TIFF'):
 title = title + '.tiff'
 self.ls_right.set(iter, COLUMN_IMAGE, title)
 jobject_wrapper = JobjectWrapper()
 jobject_wrapper.set_jobject(ds_objects[i])
 self.ls_right.set(iter, COLUMN_PATH,
 jobject_wrapper)

 valid_endings = ('.jpg', '.jpeg', '.JPEG',
 '.JPG', '.gif', '.GIF', '.tiff',
 '.TIFF', '.png', '.PNG')
 ds_mounts = datastore.mounts()
 if len(ds_mounts) == 1 and ds_mounts[0]['id'] == 1:
 # datastore.mounts() is stubbed out,
 # we're running .84 or better
 for dirname, dirnames, filenames in os.walk(
 '/media'):
 if '.olpc.store' in dirnames:
 dirnames.remove('.olpc.store')
 # don't visit .olpc.store directories
 for filename in filenames:
 if filename.endswith(valid_endings):
 iter = self.ls_right.append()
 jobject_wrapper = JobjectWrapper()
 jobject_wrapper.set_file_path(
 os.path.join(dirname, filename))
 self.ls_right.set(iter, COLUMN_IMAGE,
 filename)
 self.ls_right.set(iter, COLUMN_PATH,
 jobject_wrapper)

 self.ls_right.set_sort_column_id(COLUMN_IMAGE,
 gtk.SORT_ASCENDING)

In this case I use the datastore.mounts() method to figure out what version of the datastore I have and then if
I'm running .84 and later I use os.walk() to create a flat list of all files in all directories found under the
directory /media (which is where USB and SD cards are always mounted). I can't make these files into
directories, but what I can do is make a wrapper class that can contain either a Journal object or a file and use
those objects where I would normally use Journal objects. The wrapper class looks like this:

class JobjectWrapper():
 def __init__(self):
 self.__jobject = None
 self.__file_path = None

 def set_jobject(self, jobject):
 self.__jobject = jobject

 def set_file_path(self, file_path):
 self.__file_path = file_path

 def get_file_path(self):
 if self.__jobject != None:
 return self.__jobject.get_file_path()
 else:
 return self.__file_path

Listing Out Journal Entries 148

Using Journal Entries

When you're ready to read a file stored in a Journal object you can use the get_file_path() method of the
Journal object to get a file path and open it for reading, like this:

 fname = jobject.get_file_path()

One word of caution: be aware that this path does not exist until you call get_file_path() and will not exist
long after. With the Journal you work with copies of files in the Journal, not the originals. For that reason
you don't want to store the return value of get_file_path() for later use because later it may not be valid.
Instead, store the Journal object itself and call the method right before you need the path.

Metadata entries for Journal objects generally contain strings and work the way you would expect, with one
exception, which is the preview.

 def create_preview(self, object_id):
 jobject = datastore.get(object_id)

 if jobject.metadata.has_key('preview'):
 preview = jobject.metadata['preview']
 if preview is None or preview == '' or
 preview == 'None':
 if jobject.metadata['mime_type'].startswith(
 'image/'):
 filename = jobject.get_file_path()
 self.show_image(filename)
 return
 if jobject.metadata['mime_type'] == \
 'application/x-cbz':
 filename = jobject.get_file_path()
 fname = self.extract_image(filename)
 self.show_image(fname)
 os.remove(fname)
 return

 if jobject.metadata.has_key('preview') and \
 len(jobject.metadata['preview']) > 4:

 if jobject.metadata['preview'][1:4] == 'PNG':
 preview_data = jobject.metadata['preview']
 else:
 import base64
 preview_data = base64.b64decode(
 jobject.metadata['preview'])

 loader = gtk.gdk.PixbufLoader()
 loader.write(preview_data)
 scaled_buf = loader.get_pixbuf()
 loader.close()
 self.image.set_from_pixbuf(scaled_buf)
 self.image.show()
 else:
 self.image.clear()
 self.image.show()

The preview metadata attribute is different in two ways:

We should never request preview as metadata to be returned in our list of Journal objects. We'll need
to get a complete copy of the Journal object to get it. Since we already have a Journal object we can
get the complete Journal object by getting its object id then requesting a new copy from the datastore
using the id.

•

 Using Journal Entries 149

The preview image is a binary object (dbus.ByteArray) but in versions of Sugar older than .82 it
will be stored as a text string. To accomplish this it is base 64 encoded.

•

The code you would use to get a complete copy of a Journal object looks like this:

 object_id = jobject.object_id
 jobject = datastore.get(object_id)

Now for an explanation of base 64 encoding. You've probably heard that computers use the base two
numbering system, in which the only digits used are 1 and 0. A unit of data storage that can hold either a zero
or a one is called a bit. Computers need to store information besides numbers, so to accomodate this we
group bits into groups of 8 (usually) and these groups are called bytes. If you only use 7 of the 8 bits in a byte
you can store a letter of the Roman alphabet, a punctuation mark, or a single digit, plus things like tabs and
line feed characters. Any file that can be created using only 7 bits out of the 8 is called a text file. Everything
that needs all 8 bits of each byte to make, including computer programs, movies, music, and pictures of
Jessica Alba is a binary. In versions of Sugar before .82 Journal object metadata can only store text strings.
Somehow we need to represent 8-bit bytes in 7 bits. We do this by grouping the bytes together into a larger
collection of bits and then splitting them back out into groups of 7 bits. Python has the base64 package to do
this for us.

Base 64 encoding is actually a pretty common technique. If you've ever sent an email with an attached file the
file was base 64 encoded.

The code above has a couple of ways of creating a preview image. If the preview metadata contains a PNG
image it is loaded into a pixbuf and displayed. If there is no preview metadata but the MIME type is for an
image file or a comic book zip file we create the preview from the Journal entry itself.

The code checks the first three characters of the preview metadata to see if they are 'PNG'. If so, the file is a
Portable Network Graphics image stored as a binary and does not need to be converted from base 64
encoding, otherwise it does.

Updating A Journal Object

The code to update a Journal object looks like this:

 def update_entry(self):
 needs_update = False

 if self.selected_journal_entry is None:
 return

 object_id = self.selected_journal_entry.object_id
 jobject = datastore.get(object_id)

 old_title = jobject.metadata.get('title', None)
 if old_title != self.title_entry.props.text:
 jobject.metadata['title'] = \
 self.title_entry.props.text
 jobject.metadata['title_set_by_user'] = '1'
 needs_update = True

 old_tags = jobject.metadata.get('tags', None)
 new_tags = \
 self.tags_textview.props.buffer.props.text
 if old_tags != new_tags:
 jobject.metadata['tags'] = new_tags
 needs_update = True

 old_description = \

Updating A Journal Object 150

 jobject.metadata.get('description', None)
 new_description = \
 self.description_textview.props.buffer.props.text
 if old_description != new_description:
 jobject.metadata['description'] = \
 new_description
 needs_update = True

 if needs_update:
 datastore.write(jobject, update_mtime=False,
 reply_handler=self.datastore_write_cb,
 error_handler=self.datastore_write_error_cb)
 self.btn_save.props.sensitive = False

 def datastore_write_cb(self):
 pass

 def datastore_write_error_cb(self, error):
 logging.error(
 'sugarcommander.datastore_write_error_cb:'
 ' %r' % error)

Deleting A Journal Entry

The code to delete a Journal entry is this:

 def delete_button_press_event_cb(self, entry, event):
 datastore.delete(
 self.selected_journal_entry.object_id)

Getting Callbacks From The Journal Using D-Bus

In the chapter on Making Shared Activities we saw how D-Bus calls sent over Telepathy Tubes could be
used to send messages from an Activity running on one computer to the same Activity running on a different
computer. D-Bus is not normally used that way; typically it is used to send messages between programs
running on the same computer.

For example, if you're working with the Journal you can get callbacks whenever the Journal is updated. You
get the callbacks whether the update was done by your Activity or elsewhere. If it is important for your
Activity to know when the Journal has been updated you'll want to get these callbacks.

The first thing you need to do is define some constants and import the dbus package:

DS_DBUS_SERVICE = 'org.laptop.sugar.DataStore'
DS_DBUS_INTERFACE = 'org.laptop.sugar.DataStore'
DS_DBUS_PATH = '/org/laptop/sugar/DataStore'
import dbus

Next, in your __init__() method put code to connect to the signals and do the callbacks:

 bus = dbus.SessionBus()
 remote_object = bus.get_object(
 DS_DBUS_SERVICE, DS_DBUS_PATH)
 _datastore = dbus.Interface(remote_object,
 DS_DBUS_INTERFACE)
 _datastore.connect_to_signal('Created',
 self._datastore_created_cb)
 _datastore.connect_to_signal('Updated',
 self._datastore_updated_cb)
 _datastore.connect_to_signal('Deleted',
 self._datastore_deleted_cb)

Deleting A Journal Entry 151

The methods being run by the callbacks might look something like this:

 def datastore_created_cb(self, uid):
 new_jobject = datastore.get(uid)
 iter = self.ls_journal.append()
 title = new_jobject.metadata['title']
 self.ls_journal.set(iter,
 COLUMN_TITLE, title)
 mime = new_jobject.metadata['mime_type']
 self.ls_journal.set(iter,
 COLUMN_MIME, mime)
 self.ls_journal.set(iter,
 COLUMN_JOBJECT, new_jobject)

 def datastore_updated_cb(self, uid):
 new_jobject = datastore.get(uid)
 iter = self.ls_journal.get_iter_first()
 for row in self.ls_journal:
 jobject = row[COLUMN_JOBJECT]
 if jobject.object_id == uid:
 title = new_jobject.metadata['title']
 self.ls_journal.set_value(iter,
 COLUMN_TITLE, title)
 break
 iter = self.ls_journal.iter_next(iter)
 object_id = \
 self.selected_journal_entry.object_id
 if object_id == uid:
 self.set_form_fields(new_jobject)

 def datastore_deleted_cb(self, uid):
 save_path = self.selected_path
 iter = self.ls_journal.get_iter_first()
 for row in self.ls_journal:
 jobject = row[COLUMN_JOBJECT]
 if jobject.object_id == uid:
 self.ls_journal.remove(iter)
 break
 iter = self.ls_journal.iter_next(iter)

 try:
 self.selection_journal.select_path(
 save_path)
 self.tv_journal.grab_focus()
 except:
 self.title_entry.set_text('')
 description_textbuffer = \
 self.description_textview.get_buffer()
 description_textbuffer.set_text('')
 tags_textbuffer = \
 self.tags_textview.get_buffer()
 tags_textbuffer.set_text('')
 self.btn_save.props.sensitive = False
 self.btn_delete.props.sensitive = False
 self.image.clear()
 self.image.show()

The uid passed to each callback method is the object id of the Journal object that has been added, updated, or
deleted. If an entry is added to the Journal I get the Journal object from the datastore by its uid, then add it to
the gtk.ListStore for the gtk.TreeModel I'm using to list out Journal entries. If an entry is updated or deleted I
need to account for the possibility that the Journal entry I am viewing or editing may have been updated or
removed. I use the uid to figure out which row in the gtk.ListStore needs to be removed or modified by
looping through the entries in the gtk.ListStore looking for a match.

Getting Callbacks From The Journal Using D-Bus 152

Now you know everything you'll ever need to know to work with the Journal.

Getting Callbacks From The Journal Using D-Bus 153

Making Activities Using PyGame

Introduction

PyGame and PyGTK are two different ways to make a Python program with a graphical user interface.
Normally you would not use both in the same program. Each of them has its own way of creating a window
and each has its own way of handling events.

The base class Activity we have been using is an extension of the PyGTK Window class and uses PyGTK
event handling. The toolbars all Activities use are PyGTK components. In short, any Activity written in
Python must use PyGTK. Putting a PyGame program in the middle of a PyGTK program is a bit like putting
a model ship in a bottle. Fortunately there is some Python code called SugarGame that will make it possible
to do that.

Before we figure out how we'll get it in the bottle, let's have a look at our ship.

Making A Standalone Game Using PyGame

As you might expect, it's a good idea to make a standalone Python game using PyGame before you make an
Activity out of it. I am not an experienced PyGame developer, but using the tutorial Rapid Game
Development with Python by Richard Jones at this URL:

http://richard.cgpublisher.com/product/pub.84/prod.11

I was able to put together a modest game in about a day. It would have been sooner but the tutorial examples
had bugs in them and I had to spend a fair amount of time using The GIMP to create image files for the
sprites in the game.

Sprites are small images, often animated, that represent objects in a game. They generally have a transparent
background so they can be drawn on top of a background image. I used the PNG format for my sprite files
because it supports having an alpha channel (another term that indicates that part of the image is transparent).

PyGame has code to display background images, to create sprites and move them around on the background,
and to detect when sprites collide with one another and do something when that happens. This is the basis for
making a lot of 2D games. There are lots of games written with PyGame that could be easily adapted to be
Sugar Activities.

My game is similar to the car game in the tutorial, but instead of a car I have an airplane. The airplane is the
Demoiselle created by Alberto Santos-Dumont in 1909. Instead of having "pads" to collide with I have four
students of Otto Lilienthal hovering motionless in their hang gliders. The hang gliders pitch downwards when
Santos-Dumont collides with them. The controls used for the game have been modified too. I use the Plus
and Minus keys on both the main keyboard and the keypad, plus the keypad 9 and 3 keys, to open and close
the throttle and the Up and Down arrows on both the main keyboard and the keypad to move the joystick
forward and back. Using the keypad keys is useful for a couple of reasons. First, some versions of
sugar-emulator don't recognize the arrow keys on the main keyboard. Second, the arrow keys on the keypad
map to the game controller on the XO laptop, and the non-arrow keys on the keypad map to the other buttons
on the XO laptop screen. These buttons can be used to play the game when the XO is in tablet mode.

As a flight simulator it isn't much, but it does demonstrate at least some of the things PyGame can do. Here is
the code for the game, which I'm calling Demoiselle:

#! /usr/bin/env python
import pygame

Making Activities Using PyGame 154

http://richard.cgpublisher.com/product/pub.84/prod.11

import math
import sys

class Demoiselle:
 "This is a simple demonstration of using PyGame \
 sprites and collision detection."
 def __init__(self):
 self.background = pygame.image.load('sky.jpg')
 self.screen = pygame.display.get_surface()
 self.screen.blit(self.background, (0, 0))
 self.clock = pygame.time.Clock()
 self.running = True

 gliders = [
 GliderSprite((200, 200)),
 GliderSprite((800, 200)),
 GliderSprite((200, 600)),
 GliderSprite((800, 600)),
]
 self. glider_group = pygame.sprite.RenderPlain(
 gliders)

 def run(self):
 "This method processes PyGame messages"
 rect = self.screen.get_rect()
 airplane = AirplaneSprite('demoiselle.png',
 rect.center)
 airplane_sprite = pygame.sprite.RenderPlain(
 airplane)

 while self.running:
 self.clock.tick(30)

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 self.running = False
 return
 elif event.type == pygame.VIDEORESIZE:
 pygame.display.set_mode(event.size,
 pygame.RESIZABLE)
 self.screen.blit(self.background,
 (0, 0))

 if not hasattr(event, 'key'):
 continue
 down = event.type == pygame.KEYDOWN
 if event.key == pygame.K_DOWN or \
 event.key == pygame.K_KP2:
 airplane.joystick_back = down * 5
 elif event.key == pygame.K_UP or \
 event.key == pygame.K_KP8:
 airplane.joystick_forward = down * -5
 elif event.key == pygame.K_EQUALS or \
 event.key == pygame.K_KP_PLUS or \
 event.key == pygame.K_KP9:
 airplane.throttle_up = down * 2
 elif event.key == pygame.K_MINUS or \
 event.key == pygame.K_KP_MINUS or \
 event.key == pygame.K_KP3:
 airplane.throttle_down = down * -2

 self.glider_group.clear(self.screen,
 self.background)
 airplane_sprite.clear(self.screen,
 self.background)
 collisions = pygame.sprite.spritecollide(
 airplane,

Making A Standalone Game Using PyGame 155

 self.glider_group, False)
 self.glider_group.update(collisions)
 self.glider_group.draw(self.screen)
 airplane_sprite.update()
 airplane_sprite.draw(self.screen)
 pygame.display.flip()

class AirplaneSprite(pygame.sprite.Sprite):
 "This class represents an airplane, the Demoiselle \
 created by Alberto Santos-Dumont"
 MAX_FORWARD_SPEED = 10
 MIN_FORWARD_SPEED = 1
 ACCELERATION = 2
 TURN_SPEED = 5
 def __init__(self, image, position):
 pygame.sprite.Sprite.__init__(self)
 self.src_image = pygame.image.load(image)
 self.rect = pygame.Rect(
 self.src_image.get_rect())
 self.position = position
 self.rect.center = self.position
 self.speed = 1
 self.direction = 0
 self.joystick_back = self.joystick_forward = \
 self.throttle_down = self.throttle_up = 0

 def update(self):
 "This method redraws the airplane in response\
 to events."
 self.speed += (self.throttle_up +
 self.throttle_down)
 if self.speed > self.MAX_FORWARD_SPEED:
 self.speed = self.MAX_FORWARD_SPEED
 if self.speed < self.MIN_FORWARD_SPEED:
 self.speed = self.MIN_FORWARD_SPEED
 self.direction += (self.joystick_forward + \
 self.joystick_back)
 x_coord, y_coord = self.position
 rad = self.direction * math.pi / 180
 x_coord += -self.speed * math.cos(rad)
 y_coord += -self.speed * math.sin(rad)
 screen = pygame.display.get_surface()
 if y_coord < 0:
 y_coord = screen.get_height()

 if x_coord < 0:
 x_coord = screen.get_width()

 if x_coord > screen.get_width():
 x_coord = 0

 if y_coord > screen.get_height():
 y_coord = 0
 self.position = (x_coord, y_coord)
 self.image = pygame.transform.rotate(
 self.src_image, -self.direction)
 self.rect = self.image.get_rect()
 self.rect.center = self.position

class GliderSprite(pygame.sprite.Sprite):
 "This class represents an individual hang \
 glider as developed by Otto Lilienthal."
 def __init__(self, position):
 pygame.sprite.Sprite.__init__(self)
 self.normal = pygame.image.load(
 'glider_normal.png')
 self.rect = pygame.Rect(self.normal.get_rect())

Making A Standalone Game Using PyGame 156

 self.rect.center = position
 self.image = self.normal
 self.hit = pygame.image.load('glider_hit.png')
 def update(self, hit_list):
 "This method redraws the glider when it collides\
 with the airplane and when it is no longer \
 colliding with the airplane."
 if self in hit_list:
 self.image = self.hit
 else:
 self.image = self.normal

def main():
 "This function is called when the game is run \
 from the command line"
 pygame.init()
 pygame.display.set_mode((0, 0), pygame.RESIZABLE)
 game = Demoiselle()
 game.run()
 sys.exit(0)

if __name__ == '__main__':
 main()

And here is the game in action:

You'll find the code for this game in the file demoiselle.py in the book examples project in Git.

Introducing SugarGame

SugarGame is not part of Sugar proper. If you want to use it you'll need to include the Python code for
SugarGame inside your Activity bundle. I've included the version of SugarGame I'm using in the book
examples project in the sugargame directory, but when you make your own games you'll want to be sure and
get the latest code to include. You can do that by downloading the project from Gitorious using these
commands:

mkdir sugargame
cd sugargame

Introducing SugarGame 157

git clone git://git.sugarlabs.org/sugargame/mainline.git

You'll see two subdirectories in this project: sugargame and test, plus a README.txt file that contains
information on using sugargame in your own Activities. The test directory contains a simple PyGame
program that can be run either standalone or as an Activity. The standalone program is in the file named
TestGame.py. The Activity, which is a sort of wrapper around the standalone version, is in file
TestActivity.py.

If you run TestGame.py from the command line you'll see it displays a bouncing ball on a white background.
To try running the Activity version you'll need to run

./setup.py dev

from the command line first. I was not able to get the Activity to work under sugar-emulator until I made two
changes to it:

I made a copy of the sugargame directory within the test directory.•
I removed the line reading "sys.path.append('..') # Import sugargame package from top
directory." from TestActivity.py. Obviously this line is supposed to help the program find the
sugargame directory in the project but it didn't work in Fedora 10. Your own experience may be
different.

•

The Activity looks like this:

The PyGame toolbar has a single button that lets you make the bouncing ball pause and resume bouncing.

Making A Sugar Activity Out Of A PyGame Program

Now it's time to put our ship in that bottle. The first thing we need to do is make a copy of the sugargame
directory of the SugarGame project into the mainline directory of our own project.

The README.txt file in the SugarGame project is worth reading. It tells us to make an Activity based on
the TestActivity.py example in the SugarGame project. This will be our bottle. Here is the code for mine,
which is named DemoiselleActivity.py:

Making A Sugar Activity Out Of A PyGame Program 158

DemoiselleActivity.py

from gettext import gettext as _

import gtk
import pygame
from sugar.activity import activity
from sugar.graphics.toolbutton import ToolButton
import gobject
import sugargame.canvas
import demoiselle2

class DemoiselleActivity(activity.Activity):
 def __init__(self, handle):
 super(DemoiselleActivity, self).__init__(handle)

 # Build the activity toolbar.
 self.build_toolbar()

 # Create the game instance.
 self.game = demoiselle2.Demoiselle()

 # Build the Pygame canvas.
 self._pygamecanvas = \
 sugargame.canvas.PygameCanvas(self)
 # Note that set_canvas implicitly calls
 # read_file when resuming from the Journal.
 self.set_canvas(self._pygamecanvas)
 self.score = ''

 # Start the game running.
 self._pygamecanvas.run_pygame(self.game.run)

 def build_toolbar(self):
 toolbox = activity.ActivityToolbox(self)
 activity_toolbar = toolbox.get_activity_toolbar()
 activity_toolbar.keep.props.visible = False
 activity_toolbar.share.props.visible = False

 self.view_toolbar = ViewToolbar()
 toolbox.add_toolbar(_('View'), self.view_toolbar)
 self.view_toolbar.connect('go-fullscreen',
 self.view_toolbar_go_fullscreen_cb)
 self.view_toolbar.show()

 toolbox.show()
 self.set_toolbox(toolbox)

 def view_toolbar_go_fullscreen_cb(self, view_toolbar):
 self.fullscreen()

 def read_file(self, file_path):
 score_file = open(file_path, "r")
 while score_file:
 self.score = score_file.readline()
 self.game.set_score(int(self.score))
 score_file.close()

 def write_file(self, file_path):
 score = self.game.get_score()
 f = open(file_path, 'wb')
 try:
 f.write(str(score))
 finally:
 f.close

class ViewToolbar(gtk.Toolbar):

Making A Sugar Activity Out Of A PyGame Program 159

 __gtype_name__ = 'ViewToolbar'

 __gsignals__ = {
 'needs-update-size': (gobject.SIGNAL_RUN_FIRST,
 gobject.TYPE_NONE,
 ([])),
 'go-fullscreen': (gobject.SIGNAL_RUN_FIRST,
 gobject.TYPE_NONE,
 ([]))
 }

 def __init__(self):
 gtk.Toolbar.__init__(self)
 self.fullscreen = ToolButton('view-fullscreen')
 self.fullscreen.set_tooltip(_('Fullscreen'))
 self.fullscreen.connect('clicked',
 self.fullscreen_cb)
 self.insert(self.fullscreen, -1)
 self.fullscreen.show()

 def fullscreen_cb(self, button):
 self.emit('go-fullscreen')

This is a bit fancier than TestActivity.py. I decided that my game didn't really need to be paused and
resumed, so I replaced the PyGame toolbar with a View toolbar that lets the user hide the toolbar when it is
not needed. I use the read_file() and write_file() methods to save and restore the game score. (Actually this is
faked, because I never put in any scoring logic in the game). I also hide the Keep and Share controls in the
main toolbar.

As you would expect, getting a ship in a bottle does require the ship to be modified. Here is demoiselle2.py,
which has the modifications:

#! /usr/bin/env python
import pygame
import gtk
import math
import sys

class Demoiselle:
 "This is a simple demonstration of using PyGame \
 sprites and collision detection."
 def __init__(self):
 self.clock = pygame.time.Clock()
 self.running = True
 self.background = pygame.image.load('sky.jpg')

 def get_score(self):
 return '99'

 def run(self):
 "This method processes PyGame messages"

 screen = pygame.display.get_surface()
 screen.blit(self.background, (0, 0))

 gliders = [
 GliderSprite((200, 200)),
 GliderSprite((800, 200)),
 GliderSprite((200, 600)),
 GliderSprite((800, 600)),
]
 glider_group = pygame.sprite.RenderPlain(gliders)

 rect = screen.get_rect()
 airplane = AirplaneSprite('demoiselle.png',

Making A Sugar Activity Out Of A PyGame Program 160

 rect.center)
 airplane_sprite = pygame.sprite.RenderPlain(
 airplane)

 while self.running:
 self.clock.tick(30)

 # Pump GTK messages.
 while gtk.events_pending():
 gtk.main_iteration()

 # Pump PyGame messages.
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 self.running = False
 return
 elif event.type == pygame.VIDEORESIZE:
 pygame.display.set_mode(event.size,
 pygame.RESIZABLE)
 screen.blit(self.background, (0, 0))

 if not hasattr(event, 'key'):
 continue
 down = event.type == pygame.KEYDOWN
 if event.key == pygame.K_DOWN or \
 event.key == pygame.K_KP2:
 airplane.joystick_back = down * 5
 elif event.key == pygame.K_UP or \
 event.key == pygame.K_KP8:
 airplane.joystick_forward = down * -5
 elif event.key == pygame.K_EQUALS or \
 event.key == pygame.K_KP_PLUS or \
 event.key == pygame.K_KP9:
 airplane.throttle_up = down * 2
 elif event.key == pygame.K_MINUS or \
 event.key == pygame.K_KP_MINUS or \
 event.key == pygame.K_KP3:
 airplane.throttle_down = down * -2

 glider_group.clear(screen, self.background)
 airplane_sprite.clear(screen, self.background)
 collisions = pygame.sprite.spritecollide(
 airplane,
 glider_group, False)
 glider_group.update(collisions)
 glider_group.draw(screen)
 airplane_sprite.update()
 airplane_sprite.draw(screen)
 pygame.display.flip()

class AirplaneSprite(pygame.sprite.Sprite):
 "This class represents an airplane, the Demoiselle \
 created by Alberto Santos-Dumont"
 MAX_FORWARD_SPEED = 10
 MIN_FORWARD_SPEED = 1
 ACCELERATION = 2
 TURN_SPEED = 5
 def __init__(self, image, position):
 pygame.sprite.Sprite.__init__(self)
 self.src_image = pygame.image.load(image)
 self.rect = pygame.Rect(self.src_image.get_rect())
 self.position = position
 self.rect.center = self.position
 self.speed = 1
 self.direction = 0
 self.joystick_back = self.joystick_forward = \
 self.throttle_down = self.throttle_up = 0

Making A Sugar Activity Out Of A PyGame Program 161

 def update(self):
 "This method redraws the airplane in response\
 to events."
 self.speed += (self.throttle_up +
 self.throttle_down)
 if self.speed > self.MAX_FORWARD_SPEED:
 self.speed = self.MAX_FORWARD_SPEED
 if self.speed < self.MIN_FORWARD_SPEED:
 self.speed = self.MIN_FORWARD_SPEED
 self.direction += (self.joystick_forward +
 self.joystick_back)
 x_coord, y_coord = self.position
 rad = self.direction * math.pi / 180
 x_coord += -self.speed * math.cos(rad)
 y_coord += -self.speed * math.sin(rad)
 screen = pygame.display.get_surface()
 if y_coord < 0:
 y_coord = screen.get_height()

 if x_coord < 0:
 x_coord = screen.get_width()

 if x_coord > screen.get_width():
 x_coord = 0

 if y_coord > screen.get_height():
 y_coord = 0
 self.position = (x_coord, y_coord)
 self.image = pygame.transform.rotate(
 self.src_image, -self.direction)
 self.rect = self.image.get_rect()
 self.rect.center = self.position

class GliderSprite(pygame.sprite.Sprite):
 "This class represents an individual hang \
 glider as developed by Otto Lilienthal."
 def __init__(self, position):
 pygame.sprite.Sprite.__init__(self)
 self.normal = pygame.image.load(
 'glider_normal.png')
 self.rect = pygame.Rect(self.normal.get_rect())
 self.rect.center = position
 self.image = self.normal
 self.hit = pygame.image.load('glider_hit.png')
 def update(self, hit_list):
 "This method redraws the glider when it collides\
 with the airplane and when it is no longer \
 colliding with the airplane."
 if self in hit_list:
 self.image = self.hit
 else:
 self.image = self.normal

def main():
 "This function is called when the game is run \
 from the command line"
 pygame.init()
 pygame.display.set_mode((0, 0), pygame.RESIZABLE)
 game = Demoiselle()
 game.run()
 sys.exit(0)

if __name__ == '__main__':
 main()

Making A Sugar Activity Out Of A PyGame Program 162

Why not load both demoiselle.py and demoiselle2.py in Eric and take a few minutes to see if you can figure
out what changed between the two versions?

Surprisingly little is different. I added some code to the PyGame main loop to check for PyGTK events and
deal with them:

 while self.running:
 self.clock.tick(30)

Pump GTK messages.
 while gtk.events_pending():
 gtk.main_iteration()

 # Pump PyGame messages.
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 self.running = False
 return
 elif event.type == pygame.VIDEORESIZE:
 pygame.display.set_mode(event.size,
 pygame.RESIZABLE)
 screen.blit(self.background, (0, 0))

 if not hasattr(event, 'key'):
 continue
 down = event.type == pygame.KEYDOWN
 if event.key == pygame.K_DOWN or \

... continue dealing with PyGame events ...

This has the effect of making PyGame and PyGTK take turns handling events. If this code was not present
GTK events would be ignored and you'd have no way to close the Activity, hide the toolbar, etc. You need to
add import gtk at the top of the file so these methods can be found.

Of course I also added the methods to set and return scores:

 def get_score(self):
 return self.score

 def set_score(self, score):
 self.score = score

The biggest change is in the __init__() method of the Demoiselle class. Originally I had code to display the
background image on the screen:

 def __init__(self):
 self.background = pygame.image.load('sky.jpg')
 self.screen = pygame.display.get_surface()
 self.screen.blit(self.background, (0, 0))

The problem with this is that sugargame is going to create a special PyGTK Canvas object to replace the
PyGame display and the DemoiselleActivity code hasn't done that yet, so self.screen will have a value of
None. The only way to get around that is to move any code that refers to the display out of the __init__()
method of the class and into the beginning of the method that contains the event loop. This may leave you
with an __init__() method that does little or nothing. About the only thing you'll want there is code to create
instance variables.

Nothing we have done to demoiselle2.py will prevent it from being run as a standalone Python program.

Making A Sugar Activity Out Of A PyGame Program 163

To try out the game run ./setup.py dev from within the Making_Activities_Using_PyGame directory. When
you try out the Activity it should look like this:

Making A Sugar Activity Out Of A PyGame Program 164

Making New Style Toolbars

Introduction

They say "There's no Toolbar like an old Toolbar" and if your users are not running the very latest version of
Sugar they're right. Activities will need to support the original style toolbars for some time to come.
However, it is possible to make an Activity that supports both and that is what we'll do in this chapter.

The new style toolbars came about because of problems with the old toolbars. Activity users were having a
hard time figuring out how to quit an Activity because the Close button is only on the Activity toolbar. If the
Activity starts on a different toolbar, as many do, it is not obvious that you need to switch to the Activity
toolbar to quit the Activity. Another issue brought up was that the Tabs for the toolbars took up screen real
estate that could be better used elsewhere. Let's compare toolbars for similar Activities. First, the old style
toolbar for Read Etexts:

Now compare it with the new style toolbar for the Read Activity:

This is thinner than the older version and the Close button is always visible. Some functions are on the main
toolbar and others are attached to toolbars that drop down when you click on their icon. First, the new
Activity drop down toolbar:

Next the Edit toolbar:

Finally, the View toolbar:

Adding New Style Toolbars to Read Etexts II

When working on the original Read Etexts Activity I borrowed a lot of user interface code from the original
Read Activity and I see no reason to stop doing that now. One complication to doing this is that Read has
some dependencies that prevent the latest version of Read from working with older versions of Sugar, and

Making New Style Toolbars 165

that being the case there is no need at all for Read to support both old and new toolbars. Read Etexts IV will
not be so fortunate; it will need to figure out at runtime what kind of toolbar is supported and use that.

I am able to test the Activity with both old and new style toolbars on the same box because I'm running
Fedora 11, which has an installed Sugar environment that supports the old toolbars, plus I have downloaded
and run sugar-jhbuild, which supports the new toolbars in its version of Sugar.

Here is the code for ReadEtextsActivity4.py:

import os
import re
import logging
import time
import zipfile
import gtk
import pango
import dbus
import gobject
import telepathy
from sugar.activity import activity

from sugar.graphics.toolbutton import ToolButton

_NEW_TOOLBAR_SUPPORT = True
try:
 from sugar.graphics.toolbarbox import ToolbarBox
 from sugar.graphics.toolbarbox import ToolbarButton
 from sugar.activity.widgets import StopButton
 from toolbar import ViewToolbar
 from mybutton import MyActivityToolbarButton
except:
 _NEW_TOOLBAR_SUPPORT = False
 from toolbar import ReadToolbar, ViewToolbar

from sugar.graphics.toggletoolbutton import ToggleToolButton
from sugar.graphics.menuitem import MenuItem

from sugar.graphics import style
from sugar import network
from sugar.datastore import datastore
from sugar.graphics.alert import NotifyAlert
from gettext import gettext as _

page=0
PAGE_SIZE = 45
TOOLBAR_READ = 2

logger = logging.getLogger('read-etexts2-activity')

class ReadHTTPRequestHandler(
 network.ChunkedGlibHTTPRequestHandler):
 """HTTP Request Handler for transferring document while
 collaborating.

 RequestHandler class that integrates with Glib mainloop.
 It writes the specified file to the client in chunks,
 returning control to the mainloop between chunks.

 """
 def translate_path(self, path):
 """Return the filepath to the shared document."""
 return self.server.filepath

class ReadHTTPServer(network.GlibTCPServer):

Adding New Style Toolbars to Read Etexts II 166

 """HTTP Server for transferring document while
 collaborating."""
 def __init__(self, server_address, filepath):
 """Set up the GlibTCPServer with the
 ReadHTTPRequestHandler.

 filepath -- path to shared document to be served.
 """
 self.filepath = filepath
 network.GlibTCPServer.__init__(self,
 server_address,
 ReadHTTPRequestHandler)

class ReadURLDownloader(network.GlibURLDownloader):
 """URLDownloader that provides content-length
 and content-type."""

 def get_content_length(self):
 """Return the content-length of the download."""
 if self._info is not None:
 return int(self._info.headers.get(
 'Content-Length'))

 def get_content_type(self):
 """Return the content-type of the download."""
 if self._info is not None:
 return self._info.headers.get('Content-type')
 return None

READ_STREAM_SERVICE = 'read-etexts-activity-http'

class ReadEtextsActivity(activity.Activity):
 def __init__(self, handle):
 "The entry point to the Activity"
 global page
 activity.Activity.__init__(self, handle)

 self.fileserver = None
 self.object_id = handle.object_id

 if _NEW_TOOLBAR_SUPPORT:
 self.create_new_toolbar()
 else:
 self.create_old_toolbar()

 self.scrolled_window = gtk.ScrolledWindow()
 self.scrolled_window.set_policy(gtk.POLICY_NEVER,
 gtk.POLICY_AUTOMATIC)
 self.scrolled_window.props.shadow_type = \
 gtk.SHADOW_NONE

 self.textview = gtk.TextView()
 self.textview.set_editable(False)
 self.textview.set_cursor_visible(False)
 self.textview.set_left_margin(50)
 self.textview.connect("key_press_event",
 self.keypress_cb)

 self.progressbar = gtk.ProgressBar()
 self.progressbar.set_orientation(
 gtk.PROGRESS_LEFT_TO_RIGHT)
 self.progressbar.set_fraction(0.0)

 self.scrolled_window.add(self.textview)
 self.textview.show()
 self.scrolled_window.show()

Adding New Style Toolbars to Read Etexts II 167

 vbox = gtk.VBox()
 vbox.pack_start(self.progressbar, False,
 False, 10)
 vbox.pack_start(self.scrolled_window)
 self.set_canvas(vbox)
 vbox.show()

 page = 0
 self.clipboard = gtk.Clipboard(
 display=gtk.gdk.display_get_default(),
 selection="CLIPBOARD")
 self.textview.grab_focus()
 self.font_desc = pango.FontDescription(
 "sans %d" % style.zoom(10))
 self.textview.modify_font(self.font_desc)

 buffer = self.textview.get_buffer()
 self.markset_id = buffer.connect("mark-set",
 self.mark_set_cb)

 self.unused_download_tubes = set()
 self.want_document = True
 self.download_content_length = 0
 self.download_content_type = None
 # Status of temp file used for write_file:
 self.tempfile = None
 self.close_requested = False
 self.connect("shared", self.shared_cb)

 self.is_received_document = False

 if self._shared_activity and \
 handle.object_id == None:
 # We're joining, and we don't already have
 # the document.
 if self.get_shared():
 # Already joined for some reason,
 # just get the document
 self.joined_cb(self)
 else:
 # Wait for a successful join before
 # trying to get the document
 self.connect("joined", self.joined_cb)

 def create_old_toolbar(self):
 toolbox = activity.ActivityToolbox(self)
 activity_toolbar = toolbox.get_activity_toolbar()
 activity_toolbar.keep.props.visible = False

 self.edit_toolbar = activity.EditToolbar()
 self.edit_toolbar.undo.props.visible = False
 self.edit_toolbar.redo.props.visible = False
 self.edit_toolbar.separator.props.visible = False
 self.edit_toolbar.copy.set_sensitive(False)
 self.edit_toolbar.copy.connect('clicked',
 self.edit_toolbar_copy_cb)
 self.edit_toolbar.paste.props.visible = False
 toolbox.add_toolbar(_('Edit'), self.edit_toolbar)
 self.edit_toolbar.show()

 self.read_toolbar = ReadToolbar()
 toolbox.add_toolbar(_('Read'), self.read_toolbar)
 self.read_toolbar.back.connect('clicked',
 self.go_back_cb)
 self.read_toolbar.forward.connect('clicked',
 self.go_forward_cb)

Adding New Style Toolbars to Read Etexts II 168

 self.read_toolbar.num_page_entry.connect('activate',
 self.num_page_entry_activate_cb)
 self.read_toolbar.show()

 self.view_toolbar = ViewToolbar()
 toolbox.add_toolbar(_('View'), self.view_toolbar)
 self.view_toolbar.connect('go-fullscreen',
 self.view_toolbar_go_fullscreen_cb)
 self.view_toolbar.zoom_in.connect('clicked',
 self.zoom_in_cb)
 self.view_toolbar.zoom_out.connect('clicked',
 self.zoom_out_cb)
 self.view_toolbar.show()

 self.set_toolbox(toolbox)
 toolbox.show()
 self.toolbox.set_current_toolbar(TOOLBAR_READ)

 def create_new_toolbar(self):
 toolbar_box = ToolbarBox()

 activity_button = MyActivityToolbarButton(self)
 toolbar_box.toolbar.insert(activity_button, 0)
 activity_button.show()

 self.edit_toolbar = activity.EditToolbar()
 self.edit_toolbar.undo.props.visible = False
 self.edit_toolbar.redo.props.visible = False
 self.edit_toolbar.separator.props.visible = False
 self.edit_toolbar.copy.set_sensitive(False)
 self.edit_toolbar.copy.connect('clicked',
 self.edit_toolbar_copy_cb)
 self.edit_toolbar.paste.props.visible = False

 edit_toolbar_button = ToolbarButton(
 page=self.edit_toolbar,
 icon_name='toolbar-edit')
 self.edit_toolbar.show()
 toolbar_box.toolbar.insert(edit_toolbar_button, -1)
 edit_toolbar_button.show()

 self.view_toolbar = ViewToolbar()
 self.view_toolbar.connect('go-fullscreen',
 self.view_toolbar_go_fullscreen_cb)
 self.view_toolbar.zoom_in.connect('clicked',
 self.zoom_in_cb)
 self.view_toolbar.zoom_out.connect('clicked',
 self.zoom_out_cb)
 self.view_toolbar.show()
 view_toolbar_button = ToolbarButton(
 page=self.view_toolbar,
 icon_name='toolbar-view')
 toolbar_box.toolbar.insert(view_toolbar_button, -1)
 view_toolbar_button.show()

 self.back = ToolButton('go-previous')
 self.back.set_tooltip(_('Back'))
 self.back.props.sensitive = False
 self.back.connect('clicked', self.go_back_cb)
 toolbar_box.toolbar.insert(self.back, -1)
 self.back.show()

 self.forward = ToolButton('go-next')
 self.forward.set_tooltip(_('Forward'))
 self.forward.props.sensitive = False
 self.forward.connect('clicked',
 self.go_forward_cb)

Adding New Style Toolbars to Read Etexts II 169

 toolbar_box.toolbar.insert(self.forward, -1)
 self.forward.show()

 num_page_item = gtk.ToolItem()
 self.num_page_entry = gtk.Entry()
 self.num_page_entry.set_text('0')
 self.num_page_entry.set_alignment(1)
 self.num_page_entry.connect('insert-text',
 self.__new_num_page_entry_insert_text_cb)
 self.num_page_entry.connect('activate',
 self.__new_num_page_entry_activate_cb)
 self.num_page_entry.set_width_chars(4)
 num_page_item.add(self.num_page_entry)
 self.num_page_entry.show()
 toolbar_box.toolbar.insert(num_page_item, -1)
 num_page_item.show()

 total_page_item = gtk.ToolItem()
 self.total_page_label = gtk.Label()

 label_attributes = pango.AttrList()
 label_attributes.insert(pango.AttrSize(
 14000, 0, -1))
 label_attributes.insert(pango.AttrForeground(
 65535, 65535, 65535, 0, -1))
 self.total_page_label.set_attributes(
 label_attributes)

 self.total_page_label.set_text(' / 0')
 total_page_item.add(self.total_page_label)
 self.total_page_label.show()
 toolbar_box.toolbar.insert(total_page_item, -1)
 total_page_item.show()

 separator = gtk.SeparatorToolItem()
 separator.props.draw = False
 separator.set_expand(True)
 toolbar_box.toolbar.insert(separator, -1)
 separator.show()

 stop_button = StopButton(self)
 stop_button.props.accelerator = '<Ctrl><Shift>Q'
 toolbar_box.toolbar.insert(stop_button, -1)
 stop_button.show()

 self.set_toolbar_box(toolbar_box)
 toolbar_box.show()

 def __new_num_page_entry_insert_text_cb(self, entry,
 text, length, position):
 if not re.match('[0-9]', text):
 entry.emit_stop_by_name('insert-text')
 return True
 return False

 def __new_num_page_entry_activate_cb(self, entry):
 global page
 if entry.props.text:
 new_page = int(entry.props.text) - 1
 else:
 new_page = 0

 if new_page >= self.total_pages:
 new_page = self.total_pages - 1
 elif new_page < 0:
 new_page = 0

Adding New Style Toolbars to Read Etexts II 170

 self.current_page = new_page
 self.set_current_page(new_page)
 self.show_page(new_page)
 entry.props.text = str(new_page + 1)
 self.update_nav_buttons()
 page = new_page

 def update_nav_buttons(self):
 current_page = self.current_page
 self.back.props.sensitive = current_page > 0
 self.forward.props.sensitive = \
 current_page < self.total_pages - 1

 self.num_page_entry.props.text = str(
 current_page + 1)
 self.total_page_label.props.label = \
 ' / ' + str(self.total_pages)

 def set_total_pages(self, pages):
 self.total_pages = pages

 def set_current_page(self, page):
 self.current_page = page
 self.update_nav_buttons()

 def keypress_cb(self, widget, event):
 "Respond when the user presses one of the \
 arrow keys"
 keyname = gtk.gdk.keyval_name(event.keyval)
 print keyname
 if keyname == 'plus':
 self.font_increase()
 return True
 if keyname == 'minus':
 self.font_decrease()
 return True
 if keyname == 'Page_Up' :
 self.page_previous()
 return True
 if keyname == 'Page_Down':
 self.page_next()
 return True
 if keyname == 'Up' or keyname == 'KP_Up' \
 or keyname == 'KP_Left':
 self.scroll_up()
 return True
 if keyname == 'Down' or keyname == 'KP_Down' \
 or keyname == 'KP_Right':
 self.scroll_down()
 return True
 return False

 def num_page_entry_activate_cb(self, entry):
 global page
 if entry.props.text:
 new_page = int(entry.props.text) - 1
 else:
 new_page = 0

 if new_page >= self.read_toolbar.total_pages:
 new_page = self.read_toolbar.total_pages - 1
 elif new_page < 0:
 new_page = 0

 self.read_toolbar.current_page = new_page
 self.read_toolbar.set_current_page(new_page)
 self.show_page(new_page)

Adding New Style Toolbars to Read Etexts II 171

 entry.props.text = str(new_page + 1)
 self.read_toolbar.update_nav_buttons()
 page = new_page

 def go_back_cb(self, button):
 self.page_previous()

 def go_forward_cb(self, button):
 self.page_next()

 def page_previous(self):
 global page
 page=page-1
 if page < 0: page=0
 if _NEW_TOOLBAR_SUPPORT:
 self.set_current_page(page)
 else:
 self.read_toolbar.set_current_page(page)
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.upper - \
 v_adjustment.page_size

 def page_next(self):
 global page
 page=page+1
 if page >= len(self.page_index): page=0
 if _NEW_TOOLBAR_SUPPORT:
 self.set_current_page(page)
 else:
 self.read_toolbar.set_current_page(page)
 self.show_page(page)
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 v_adjustment.value = v_adjustment.lower

 def zoom_in_cb(self, button):
 self.font_increase()

 def zoom_out_cb(self, button):
 self.font_decrease()

 def font_decrease(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size - 1
 if font_size < 1:
 font_size = 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def font_increase(self):
 font_size = self.font_desc.get_size() / 1024
 font_size = font_size + 1
 self.font_desc.set_size(font_size * 1024)
 self.textview.modify_font(self.font_desc)

 def mark_set_cb(self, textbuffer, iter, textmark):

 if textbuffer.get_has_selection():
 begin, end = textbuffer.get_selection_bounds()
 self.edit_toolbar.copy.set_sensitive(True)
 else:
 self.edit_toolbar.copy.set_sensitive(False)

 def edit_toolbar_copy_cb(self, button):
 textbuffer = self.textview.get_buffer()

Adding New Style Toolbars to Read Etexts II 172

 begin, end = textbuffer.get_selection_bounds()
 copy_text = textbuffer.get_text(begin, end)
 self.clipboard.set_text(copy_text)

 def view_toolbar_go_fullscreen_cb(self, view_toolbar):
 self.fullscreen()

 def scroll_down(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.upper - \
 v_adjustment.page_size:
 self.page_next()
 return
 if v_adjustment.value < v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.value + \
 v_adjustment.step_increment
 if new_value > v_adjustment.upper - \
 v_adjustment.page_size:
 new_value = v_adjustment.upper - \
 v_adjustment.page_size
 v_adjustment.value = new_value

 def scroll_up(self):
 v_adjustment = \
 self.scrolled_window.get_vadjustment()
 if v_adjustment.value == v_adjustment.lower:
 self.page_previous()
 return
 if v_adjustment.value > v_adjustment.lower:
 new_value = v_adjustment.value - \
 v_adjustment.step_increment
 if new_value < v_adjustment.lower:
 new_value = v_adjustment.lower
 v_adjustment.value = new_value

 def show_page(self, page_number):
 global PAGE_SIZE, current_word
 position = self.page_index[page_number]
 self.etext_file.seek(position)
 linecount = 0
 label_text = '\n\n\n'
 textbuffer = self.textview.get_buffer()
 while linecount < PAGE_SIZE:
 line = self.etext_file.readline()
 label_text = label_text + unicode(line,
 'iso-8859-1')
 linecount = linecount + 1
 label_text = label_text + '\n\n\n'
 textbuffer.set_text(label_text)
 self.textview.set_buffer(textbuffer)

 def save_extracted_file(self, zipfile, filename):
 "Extract the file to a temp directory for viewing"
 filebytes = zipfile.read(filename)
 outfn = self.make_new_filename(filename)
 if (outfn == ''):
 return False
 f = open(os.path.join(self.get_activity_root(),
 'tmp', outfn), 'w')
 try:
 f.write(filebytes)
 finally:
 f.close()

 def get_saved_page_number(self):

Adding New Style Toolbars to Read Etexts II 173

 global page
 title = self.metadata.get('title', '')
 if title == '' or not title[len(title)-1].isdigit():
 page = 0
 else:
 i = len(title) - 1
 newPage = ''
 while (title[i].isdigit() and i > 0):
 newPage = title[i] + newPage
 i = i - 1
 if title[i] == 'P':
 page = int(newPage) - 1
 else:
 # not a page number; maybe a volume number.
 page = 0

 def save_page_number(self):
 global page
 title = self.metadata.get('title', '')
 if title == '' or not title[len(title)-1].isdigit():
 title = title + ' P' + str(page + 1)
 else:
 i = len(title) - 1
 while (title[i].isdigit() and i > 0):
 i = i - 1
 if title[i] == 'P':
 title = title[0:i] + 'P' + str(page + 1)
 else:
 title = title + ' P' + str(page + 1)
 self.metadata['title'] = title

 def read_file(self, filename):
 "Read the Etext file"
 global PAGE_SIZE, page

 tempfile = os.path.join(self.get_activity_root(),
 'instance', 'tmp%i' % time.time())
 os.link(filename, tempfile)
 self.tempfile = tempfile

 if zipfile.is_zipfile(filename):
 self.zf = zipfile.ZipFile(filename, 'r')
 self.book_files = self.zf.namelist()
 self.save_extracted_file(self.zf,
 self.book_files[0])
 currentFileName = os.path.join(
 self.get_activity_root(),
 'tmp', self.book_files[0])
 else:
 currentFileName = filename

 self.etext_file = open(currentFileName,"r")
 self.page_index = [0]
 pagecount = 0
 linecount = 0
 while self.etext_file:
 line = self.etext_file.readline()
 if not line:
 break
 linecount = linecount + 1
 if linecount >= PAGE_SIZE:
 position = self.etext_file.tell()
 self.page_index.append(position)
 linecount = 0
 pagecount = pagecount + 1
 if filename.endswith(".zip"):
 os.remove(currentFileName)

Adding New Style Toolbars to Read Etexts II 174

 self.get_saved_page_number()
 self.show_page(page)
 if _NEW_TOOLBAR_SUPPORT:
 self.set_total_pages(pagecount + 1)
 self.set_current_page(page)
 else:
 self.read_toolbar.set_total_pages(
 pagecount + 1)
 self.read_toolbar.set_current_page(page)

 # We've got the document, so if we're a shared
 # activity, offer it
 if self.get_shared():
 self.watch_for_tubes()
 self.share_document()

 def make_new_filename(self, filename):
 partition_tuple = filename.rpartition('/')
 return partition_tuple[2]

 def write_file(self, filename):
 "Save meta data for the file."
 if self.is_received_document:
 # This document was given to us by someone,
 # so we have to save it to the Journal.
 self.etext_file.seek(0)
 filebytes = self.etext_file.read()
 print 'saving shared document'
 f = open(filename, 'wb')
 try:
 f.write(filebytes)
 finally:
 f.close()
 elif self.tempfile:
 if self.close_requested:
 os.link(self.tempfile, filename)
 logger.debug(
 "Removing temp file %s because "
 "we will close",
 self.tempfile)
 os.unlink(self.tempfile)
 self.tempfile = None
 else:
 # skip saving empty file
 raise NotImplementedError

 self.metadata['activity'] = self.get_bundle_id()
 self.save_page_number()

 def can_close(self):
 self.close_requested = True
 return True

 def joined_cb(self, also_self):
 """Callback for when a shared activity is joined.

 Get the shared document from another participant.
 """
 self.watch_for_tubes()
 gobject.idle_add(self.get_document)

 def get_document(self):
 if not self.want_document:
 return False

 # Assign a file path to download if one
 # doesn't exist yet

Adding New Style Toolbars to Read Etexts II 175

 if not self._jobject.file_path:
 path = os.path.join(self.get_activity_root(),
 'instance', 'tmp%i' % time.time())
 else:
 path = self._jobject.file_path

 # Pick an arbitrary tube we can try to download
 # the document from
 try:
 tube_id = self.unused_download_tubes.pop()
 except (ValueError, KeyError), e:
 logger.debug(
 'No tubes to get the document from '
 'right now: %s', e)
 return False

 # Avoid trying to download the document
 # multiple times at once
 self.want_document = False
 gobject.idle_add(self.download_document,
 tube_id, path)
 return False

 def download_document(self, tube_id, path):
 chan = self._shared_activity.telepathy_tubes_chan
 iface = chan[telepathy.CHANNEL_TYPE_TUBES]
 addr = iface.AcceptStreamTube(tube_id,
 telepathy.SOCKET_ADDRESS_TYPE_IPV4,
 telepathy.SOCKET_ACCESS_CONTROL_LOCALHOST,
 0,
 utf8_strings=True)
 logger.debug(
 'Accepted stream tube: '
 'listening address is %r',
 addr)
 assert isinstance(addr, dbus.Struct)
 assert len(addr) == 2
 assert isinstance(addr[0], str)
 assert isinstance(addr[1], (int, long))
 assert addr[1] > 0 and addr[1] < 65536
 port = int(addr[1])

 self.progressbar.show()
 getter = ReadURLDownloader(
 "http://%s:%d/document"
 % (addr[0], port))
 getter.connect("finished",
 self.download_result_cb, tube_id)
 getter.connect("progress",
 self.download_progress_cb, tube_id)
 getter.connect("error",
 self.download_error_cb, tube_id)
 logger.debug("Starting download to %s...", path)
 getter.start(path)
 self.download_content_length = \
 getter.get_content_length()
 self.download_content_type = \
 getter.get_content_type()
 return False

 def download_progress_cb(self, getter,
 bytes_downloaded, tube_id):
 if self.download_content_length > 0:
 logger.debug(
 "Downloaded %u of %u bytes from tube %u...",
 bytes_downloaded,
 self.download_content_length,

Adding New Style Toolbars to Read Etexts II 176

 tube_id)
 else:
 logger.debug(
 "Downloaded %u bytes from tube %u...",
 bytes_downloaded, tube_id)
 total = self.download_content_length
 self.set_downloaded_bytes(bytes_downloaded,
 total)
 gtk.gdk.threads_enter()
 while gtk.events_pending():
 gtk.main_iteration()
 gtk.gdk.threads_leave()

 def set_downloaded_bytes(self, bytes, total):
 fraction = float(bytes) / float(total)
 self.progressbar.set_fraction(fraction)
 logger.debug("Downloaded percent", fraction)

 def clear_downloaded_bytes(self):
 self.progressbar.set_fraction(0.0)
 logger.debug("Cleared download bytes")

 def download_error_cb(self, getter, err, tube_id):
 self.progressbar.hide()
 logger.debug(
 "Error getting document from tube %u: %s",
 tube_id, err)
 self.alert(_('Failure'),
 _('Error getting document from tube'))
 self.want_document = True
 self.download_content_length = 0
 self.download_content_type = None
 gobject.idle_add(self.get_document)

 def download_result_cb(self, getter, tempfile,
 suggested_name, tube_id):
 if self.download_content_type.startswith(
 'text/html'):
 # got an error page instead
 self.download_error_cb(getter,
 'HTTP Error', tube_id)
 return

 del self.unused_download_tubes

 self.tempfile = tempfile
 file_path = os.path.join(
 self.get_activity_root(),
 'instance', '%i' % time.time())
 logger.debug(
 "Saving file %s to datastore...", file_path)
 os.link(tempfile, file_path)
 self._jobject.file_path = file_path
 datastore.write(self._jobject,
 transfer_ownership=True)

 logger.debug("Got document %s (%s) from tube %u",
 tempfile, suggested_name, tube_id)
 self.is_received_document = True
 self.read_file(tempfile)
 self.save()
 self.progressbar.hide()

 def shared_cb(self, activityid):
 """Callback when activity shared.

 Set up to share the document.

Adding New Style Toolbars to Read Etexts II 177

 """
 # We initiated this activity and have now
 # shared it, so by definition we have the file.
 logger.debug('Activity became shared')
 self.watch_for_tubes()
 self.share_document()

 def share_document(self):
 """Share the document."""
 h = hash(self._activity_id)
 port = 1024 + (h % 64511)
 logger.debug(
 'Starting HTTP server on port %d', port)
 self.fileserver = ReadHTTPServer(("", port),
 self.tempfile)

 # Make a tube for it
 chan = self._shared_activity.telepathy_tubes_chan
 iface = chan[telepathy.CHANNEL_TYPE_TUBES]
 self.fileserver_tube_id = iface.OfferStreamTube(
 READ_STREAM_SERVICE,
 {},
 telepathy.SOCKET_ADDRESS_TYPE_IPV4,
 ('127.0.0.1', dbus.UInt16(port)),
 telepathy.SOCKET_ACCESS_CONTROL_LOCALHOST, 0)

 def watch_for_tubes(self):
 """Watch for new tubes."""
 tubes_chan = \
 self._shared_activity.telepathy_tubes_chan

 tubes_chan[telepathy.CHANNEL_TYPE_TUBES].\
 connect_to_signal(
 'NewTube',
 self.new_tube_cb)
 tubes_chan[telepathy.CHANNEL_TYPE_TUBES].ListTubes(
 reply_handler=self.list_tubes_reply_cb,
 error_handler=self.list_tubes_error_cb)

 def new_tube_cb(self, tube_id, initiator, tube_type,
 service, params, state):
 """Callback when a new tube becomes available."""
 logger.debug(
 'New tube: ID=%d initator=%d type=%d service=%s '
 'params=%r state=%d', tube_id,
 initiator, tube_type,
 service, params, state)
 if service == READ_STREAM_SERVICE:
 logger.debug('I could download from that tube')
 self.unused_download_tubes.add(tube_id)
 # if no download is in progress, let's
 # fetch the document
 if self.want_document:
 gobject.idle_add(self.get_document)

 def list_tubes_reply_cb(self, tubes):
 """Callback when new tubes are available."""
 for tube_info in tubes:
 self.new_tube_cb(*tube_info)

 def list_tubes_error_cb(self, e):
 """Handle ListTubes error by logging."""
 logger.error('ListTubes() failed: %s', e)

 def alert(self, title, text=None):
 alert = NotifyAlert(timeout=20)

Adding New Style Toolbars to Read Etexts II 178

 alert.props.title = title
 alert.props.msg = text
 self.add_alert(alert)
 alert.connect('response', self.alert_cancel_cb)
 alert.show()

 def alert_cancel_cb(self, alert, response_id):
 self.remove_alert(alert)
 self.textview.grab_focus()

Here is what it looks like running under sugar-jhbuild:

Let's have a look at how it works. â�� If you've paid attention to other chapters when I've talked about the
idea of "degrading gracefully" the imports in this code will be about what you would expect:

_NEW_TOOLBAR_SUPPORT = True
try:
 from sugar.graphics.toolbarbox import ToolbarBox
 from sugar.graphics.toolbarbox import ToolbarButton
 from sugar.activity.widgets import StopButton
 from toolbar import ViewToolbar
 from mybutton import MyActivityToolbarButton
except:
 _NEW_TOOLBAR_SUPPORT = False
 from toolbar import ReadToolbar, ViewToolbar

Here we try to import a bunch of stuff that only exists in versions of Sugar that support the new toolbars. If
we succeed, then _NEW_TOOLBAR_SUPPORT will remain set to True. If any of the imports fail then the
variable is set to False. Note that a couple of imports that should always succeed are placed after the three
that might fail. If any of the first three fail I don't want these imports to be done.

This next bit of code in the __init__() method should not be surprising:

 if _NEW_TOOLBAR_SUPPORT:
 self.create_new_toolbar()
 else:
 self.create_old_toolbar()

Adding New Style Toolbars to Read Etexts II 179

I moved creating the toolbars into their own methods to make it easier to compare how the two different
toolbars are created. The old toolbar code is unchanged. Here is the new toolbar code:

 def create_new_toolbar(self):
 toolbar_box = ToolbarBox()

 activity_button = MyActivityToolbarButton(self)
 toolbar_box.toolbar.insert(activity_button, 0)
 activity_button.show()

 self.edit_toolbar = activity.EditToolbar()
 self.edit_toolbar.undo.props.visible = False
 self.edit_toolbar.redo.props.visible = False
 self.edit_toolbar.separator.props.visible = False
 self.edit_toolbar.copy.set_sensitive(False)
 self.edit_toolbar.copy.connect('clicked',
 self.edit_toolbar_copy_cb)
 self.edit_toolbar.paste.props.visible = False

 edit_toolbar_button = ToolbarButton(
 page=self.edit_toolbar,
 icon_name='toolbar-edit')
 self.edit_toolbar.show()
 toolbar_box.toolbar.insert(edit_toolbar_button, -1)
 edit_toolbar_button.show()

 self.view_toolbar = ViewToolbar()
 self.view_toolbar.connect('go-fullscreen',
 self.view_toolbar_go_fullscreen_cb)
 self.view_toolbar.zoom_in.connect('clicked',
 self.zoom_in_cb)
 self.view_toolbar.zoom_out.connect('clicked',
 self.zoom_out_cb)
 self.view_toolbar.show()
 view_toolbar_button = ToolbarButton(
 page=self.view_toolbar,
 icon_name='toolbar-view')
 toolbar_box.toolbar.insert(
 view_toolbar_button, -1)
 view_toolbar_button.show()

 self.back = ToolButton('go-previous')
 self.back.set_tooltip(_('Back'))
 self.back.props.sensitive = False
 self.back.connect('clicked', self.go_back_cb)
 toolbar_box.toolbar.insert(self.back, -1)
 self.back.show()

 self.forward = ToolButton('go-next')
 self.forward.set_tooltip(_('Forward'))
 self.forward.props.sensitive = False
 self.forward.connect('clicked',
 self.go_forward_cb)
 toolbar_box.toolbar.insert(self.forward, -1)
 self.forward.show()

 num_page_item = gtk.ToolItem()
 self.num_page_entry = gtk.Entry()
 self.num_page_entry.set_text('0')
 self.num_page_entry.set_alignment(1)
 self.num_page_entry.connect('insert-text',
 self.__new_num_page_entry_insert_text_cb)
 self.num_page_entry.connect('activate',
 self.__new_num_page_entry_activate_cb)
 self.num_page_entry.set_width_chars(4)
 num_page_item.add(self.num_page_entry)

Adding New Style Toolbars to Read Etexts II 180

 self.num_page_entry.show()
 toolbar_box.toolbar.insert(num_page_item, -1)
 num_page_item.show()

 total_page_item = gtk.ToolItem()
 self.total_page_label = gtk.Label()

 label_attributes = pango.AttrList()
 label_attributes.insert(pango.AttrSize(
 14000, 0, -1))
 label_attributes.insert(pango.AttrForeground(
 65535, 65535, 65535, 0, -1))
 self.total_page_label.set_attributes(
 label_attributes)

 self.total_page_label.set_text(' / 0')
 total_page_item.add(self.total_page_label)
 self.total_page_label.show()
 toolbar_box.toolbar.insert(total_page_item, -1)
 total_page_item.show()

 separator = gtk.SeparatorToolItem()
 separator.props.draw = False
 separator.set_expand(True)
 toolbar_box.toolbar.insert(separator, -1)
 separator.show()

 stop_button = StopButton(self)
 stop_button.props.accelerator = '<Ctrl><Shift>Q'
 toolbar_box.toolbar.insert(stop_button, -1)
 stop_button.show()

 self.set_toolbar_box(toolbar_box)
 toolbar_box.show()

 def __new_num_page_entry_insert_text_cb(self, entry,
 text, length, position):
 if not re.match('[0-9]', text):
 entry.emit_stop_by_name('insert-text')
 return True
 return False

 def __new_num_page_entry_activate_cb(self, entry):
 global page
 if entry.props.text:
 new_page = int(entry.props.text) - 1
 else:
 new_page = 0

 if new_page >= self.total_pages:
 new_page = self.total_pages - 1
 elif new_page < 0:
 new_page = 0

 self.current_page = new_page
 self.set_current_page(new_page)
 self.show_page(new_page)
 entry.props.text = str(new_page + 1)
 self.update_nav_buttons()
 page = new_page

 def update_nav_buttons(self):
 current_page = self.current_page
 self.back.props.sensitive = current_page > 0
 self.forward.props.sensitive = \
 current_page < self.total_pages - 1

Adding New Style Toolbars to Read Etexts II 181

 self.num_page_entry.props.text = str(
 current_page + 1)
 self.total_page_label.props.label = \
 ' / ' + str(self.total_pages)

 def set_total_pages(self, pages):
 self.total_pages = pages

 def set_current_page(self, page):
 self.current_page = page
 self.update_nav_buttons()

Much of the code in the two methods is the same. In particular, the View toolbar and the Edit toolbar are
exactly the same in both. Instead of becoming the active toolbar they drop down from the toolbar to become
sub toolbars. If we had done the Read toolbar the same way we could have implemented both old and new
toolbars with very little code. However, the Read toolbar contains controls that are important enough to the
Activity that they should be available at all times, so we put them in the main toolbar instead. Because of this
every place where the code refers to the Read toolbar has to have two ways it can be performed, like this:

 if _NEW_TOOLBAR_SUPPORT:
 self.set_total_pages(pagecount + 1)
 self.set_current_page(page)
 else:
 self.read_toolbar.set_total_pages(
 pagecount + 1)
 self.read_toolbar.set_current_page(page)

There is one more point of interest when it comes to the main toolbar. When you have an old style toolbar
you get the stop button as part of the Activity toolbar. With the new style toolbar you need to add it to the
end of the main toolbar yourself:

 separator = gtk.SeparatorToolItem()
 separator.props.draw = False
 separator.set_expand(True)
 toolbar_box.toolbar.insert(separator, -1)
 separator.show()

 stop_button = StopButton(self)
 stop_button.props.accelerator = '<Ctrl><Shift>Q'
 toolbar_box.toolbar.insert(stop_button, -1)
 stop_button.show()

Note that you must put a gtk.SeparatorToolItem with set_expand() equal to True before the StopButton.
This will push the button all the way to the right of the toolbar, where it belongs.

That just leaves the Activity toolbar to discuss:

 toolbar_box = ToolbarBox()

 activity_button = MyActivityToolbarButton(self)
 toolbar_box.toolbar.insert(activity_button, 0)
 activity_button.show()

Normally you would use the class ActivityToolbarButton to create the default drop down Activity toolbar.
The problem I have with that is if I do that there is no way to hide the Keep button or the Share control. This
version of the Activity needs the Share control, but has no use at all for the Keep button.

There have been some spirited discussions about the Keep button on the mailing lists. New computer users
don't know what it's for, and experienced computer users expect it to be like a Save Game button or a Save
As... menu option in a regular application. It isn't quite like either one, and that can lead to confusion. For
these reasons I've decided that no Activity of mine will leave the Keep button unhidden. To hide the button I

Adding New Style Toolbars to Read Etexts II 182

copied a bit of the code for the original ActivityToolbarButton in a file named mybutton.py:

import gtk
import gconf

from sugar.graphics.toolbarbox import ToolbarButton
from sugar.activity.widgets import ActivityToolbar
from sugar.graphics.xocolor import XoColor
from sugar.graphics.icon import Icon
from sugar.bundle.activitybundle import ActivityBundle

def _create_activity_icon(metadata):
 if metadata.get('icon-color', ''):
 color = XoColor(metadata['icon-color'])
 else:
 client = gconf.client_get_default()
 color = XoColor(client.get_string(
 '/desktop/sugar/user/color'))

 from sugar.activity.activity import get_bundle_path
 bundle = ActivityBundle(get_bundle_path())
 icon = Icon(file=bundle.get_icon(), xo_color=color)

 return icon

class MyActivityToolbarButton(ToolbarButton):

 def __init__(self, activity, **kwargs):
 toolbar = ActivityToolbar(activity,
 orientation_left=True)
 toolbar.stop.hide()

toolbar.keep.hide()

 ToolbarButton.__init__(self, page=toolbar,
 **kwargs)

 icon = _create_activity_icon(activity.metadata)
 self.set_icon_widget(icon)
 icon.show()

The line in bold is the one difference between mine and the original. If toolbar had been made an instance
variable (self.toolbar) I could have used the original class.

Adding New Style Toolbars to Read Etexts II 183

Where To Go From Here?
This book attempts to give a beginning programmer the information she needs to develop and publish her own
Sugar Activities. It already contains many URL's of websites containing information not covered in the
book. This chapter will contain URL's and pointers to still more resources that will be useful to any Sugar
developer.

PyGTK Book by Peter Gill

Much of the work you will do writing Activities involves PyGTK. Peter Gill is working on a PyGTK book
that covers the subject in great detail. You can download the book here:

http://www.majorsilence.com/PyGTK_Book

OLPC Austria Activity Handbook

This is the first attempt to write a manual on creating Sugar Activities. It is aimed at experienced
programmers and covers topics that this book does not, like how to write Activities using languages other than
Python. The book was written in 2008 and as a result some of the advice is a bit dated. It's still an excellent
source of information. The authors are Christoph Derndorfer and Daniel Jahre.

http://wiki.sugarlabs.org/images/5/51/Activity_Handbook_200805_online.pdf

http://www.olpcaustria.org

The Sugar Almanac

This is a series of Wiki articles covering the Sugar API (Application Programming Interface). It's a good
source of information that I have referred to many times.

http://wiki.sugarlabs.org/go/Development_Team/Almanac

Sugar Labs Mailing Lists

Sugar Labs has several email mailing lists that might be worth subscribing to. The ones I follow most are the
IAEP (It's An Education Proiject) list and Sugar-Devel. Sugar-Devel is a good place to ask questions
about developing Sugar Activities and learn about the latest work being done on Sugar itself. IAEP is a good
place to get ideas on what kinds of Activities teachers and students want and to get feedback on your own
Activities. Anyone can sign up to these mailing lists here:

http://lists.sugarlabs.org/

PyDoc

PyDoc is a utility for viewing documentation generated from the Python libraries on your computer, including
the Sugar libraries. To run it use this command from a terminal:

pydoc -p 1234

This command will not finish. It runs a kind of web server on your system where 1234 is a port number. You
can access the website it serves at http://localhost:1234. There is nothing magic about the number 1234.

Where To Go From Here? 184

http://www.majorsilence.com/PyGTK_Book
http://wiki.sugarlabs.org/images/5/51/Activity_Handbook_200805_online.pdf
http://www.olpcaustria.org
http://wiki.sugarlabs.org/go/Development_Team/Almanac
http://lists.sugarlabs.org

You can use any number you like.

The website lets you follow links to documentation on all the Python libraries you have installed. When you
are done browsing the documentation you can stop the pydoc command bt returning to the terminal and
hitting Ctrl-C (hold down the Ctrl key and hit the "c" key).

PyDoc 185

About The Authors

James Simmons

James Simmons has programmed professionally since 1978. Back then computer programs were made using
a special machine that punched holes into cards, reels of tape were the most common data storage medium,
and hard disks were so expensive and exotic that the hard disk inventory of a Fortune 500 company would
today be considered barely large enough to hold a nice picture of Jessica Alba.

The industry has come a long way since then, and to a lesser extent so has James.

James learned to program at Oakton Community College in Morton Grove, Illinois and Western Illinois
University in Macomb, Illinois. Times were hard back then and a young man's best chance of being
employed after graduation was to become an Accountant or a Computer Programmer. It was while he
attended OCC that James saw a Monty Python sketch about an Accountant who wished to become a Lion
Tamer. This convinced James that he should become a Computer Programmer.

James' studies at WIU got off to a rough start when he signed up for Basic Assembly Language as his first real
computer class, erroneously thinking that the word "Basic" meant "for beginners". From the computer's point
of view it was basic, but for students not so much. He barely passed the course with a "D" but in the process
learned that he enjoyed programming computers. He decided to continue his computer studies and graduated
with a Bachelor's Degree in Information Science.

James was born in 1956, the year before Sputnik went up. He was a nerdy kid. At various times he fooled
around with Erector sets, chemistry sets, microscopes, dissecting kits, model cars, model planes, model
rockets, amateur radio, film making, and writing science fiction stories. He achieved no real success with any
of these activities.

James participated in the first Give One Get One promotion of the One Laptop Per Child project and started
developing Activities for the Sugar platform soon after. He has written the Activities Read Etexts, View
Slides, Sugar Commander and Get Internet Archive Books.

James Cameron

James Cameron has programmed as a child since 1978, and professionally since 1982. He learned on
programmable calculators, Apple II, TRS-80, Commodore 64, and then DEC VAX.

James completed a Bachelor's Degree in Business in 1991, majoring in Management Information Systems. He
has worked for electrical engineering and computer manufacturing companies. He became interested in One
Laptop Per Child as a volunteer and provided radio range testing in the Australian outback, and is now
working for OLPC as System Test Coordinator.

James reviewed the example code in this book and made many suggestions for improving it.

Oceana Rain Fields

Oceana Rain Fields â�� Oceana is a visual artist and creative spirit with a flair for the unexpected and the
desire to support worthy causes with her art. She graduated in 2010 from Pacific High School, earning several
notable scholarships. In 2010, her painting â��Malariaâ�� won first in show in the Vision 2010 high school
art competition at the Coos Art Museum in Coos Bay, Oregon. Oceana plans to continue her art education at
Southwestern Oregon Community College in Fall 2010.

About The Authors 186

http://sixes.net/rdcHQ/about/meet-the-rdc/oceana-rain-fields/

Oceana is responsible for the cover art of this book. As a "mentee" of the Rural Design Collective, she also
did cover and interior illustrations for another FLOSS Manual: An E-Book Revolution: Reading and Leading
with One Laptop Per Child.

Oceana Rain Fields 187

License
All chapters copyright of the authors (see below). Unless otherwise stated all chapters in this manual licensed
with GNU General Public License version 2

This documentation is free documentation; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

License 188

Acknowledgements
Many people contributed to this book besides the authors listed. They offered advice, technical support,
corrections, and much code. If I tried to list all of their names I might leave someone out, so let me just thank
all the members of the Sugar-Devel mailing list.

Cover art Copyright (C) 2010 by Oceana Rain Fields.

Acknowledgements 189

Authors
ABOUT THE AUTHORS
© James Simmons 2010

MAKING ACTIVITIES USING PYGAME
© James Simmons 2010

ADD REFINEMENTS
© James Simmons 2009, 2010
Modifications:
Lachlan Musicman 2010

CREATING YOUR FIRST ACTIVITY
© Anne Gentle 2009
Modifications:
James Simmons 2009, 2010
Lachlan Musicman 2010

CREDITS
© adam hyde 2006, 2007
Modifications:
James Simmons 2010
Lachlan Musicman 2010

DISTRIBUTE YOUR ACTIVITY
© James Simmons 2010
Modifications:
Lachlan Musicman 2010

FUN WITH THE JOURNAL
© James Simmons 2010

GOING INTERNATIONAL WITH POOTLE
© James Simmons 2010
Modifications:
Lachlan Musicman 2010

INHERIT FROM SUGAR.ACTIVITY.ACTIVITY
© James Simmons 2009, 2010
Modifications:
Lachlan Musicman 2010

INTRODUCTION
© adam hyde 2006, 2007
Modifications:
James Simmons 2009, 2010
Lachlan Musicman 2010

WHERE TO GO FROM HERE?
© James Simmons 2010

Authors 190

WHAT DO I NEED TO KNOW TO WRITE A SUGAR ACTIVITY?
© Anne Gentle 2009
Modifications:
James Simmons 2009, 2010
Lachlan Musicman 2010

MAKING NEW STYLE TOOLBARS
© James Simmons 2010

PACKAGE THE ACTIVITY
© James Simmons 2009, 2010
Modifications:
Lachlan Musicman 2010

SETTING UP A DEVELOPMENT ENVIRONMENT
© Anne Gentle 2009
Modifications:
James Simmons 2009, 2010
Lachlan Musicman 2010

A STANDALONE PYTHON PROGRAM FOR READING ETEXTS
© James Simmons 2009, 2010
Modifications:
Lachlan Musicman 2010

MAKING SHARED ACTIVITIES
© James Simmons 2010
Modifications:
TWikiGuest 2010

DEBUGGING SUGAR ACTIVITIES
© James Simmons 2010

ADDING TEXT TO SPEECH
© James Simmons 2010
Modifications:
Lachlan Musicman 2010

ADD YOUR ACTIVITY CODE TO VERSION CONTROL
© James Simmons 2010
Modifications:
Lachlan Musicman 2010

WHAT IS SUGAR?
© Anne Gentle 2009
Modifications:
James Simmons 2009, 2010
Lachlan Musicman 2010

WHAT IS A SUGAR ACTIVITY?
© Anne Gentle 2009
Modifications:
James Simmons 2009, 2010

Authors 191

Lachlan Musicman 2010

Free manuals for free software

Authors 192

http://www.flossmanuals.net/

General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Lesser General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without

General Public License 193

limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if
its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

General Public License 194

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

General Public License 195

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

General Public License 196

END OF TERMS AND CONDITIONS

General Public License 197

	Table of Contents
	Introduction
	What is Sugar?
	The Journal
	Collaboration
	Security
	Summary

	What is a Sugar Activity?
	What Do I Need To Know To Write A Sugar Activity?
	Python
	PyGTK
	PyGame

	Setting Up a Sugar Development Environment
	Install Linux Or Use A Virtual Machine?
	What About Using sugar-jhbuild?
	Python
	Eric
	SPE (Stani's Python Editor)
	Other IDE's
	Inkscape
	Git
	The GIMP
	Sugar Emulation

	Creating your First Sugar Activity
	Make A Standalone Python Program First
	Inherit From The sugar.activity.Activity Class
	Package The Activity
	Add Refinements
	 Put The Project Code In Version Control
	 Going International With Pootle
	Distributing The Activity
	 Add Collaboration
	Add Text To Speech

	 A Standalone Python Program For Reading Etexts
	The Program
	 Running The Program
	How The Program Works

	Inherit From sugar.activity.Activity
	Object Oriented Python
	Extending The Activity Class

	Package The Activity
	Add setup.py
	Create activity.info
	Create An Icon
	Make a MANIFEST File
	Install The Activity
	Running Our Activity

	Add Refinements
	Toolbars
	Metadata And Journal Entries

	Add Your Activity Code To Version Control
	What Is Version Control?
	Git Along Little Dogies
	Setting Up SSH Keys
	Create A New Project
	Everyday Use Of Git

	Going International With Pootle
	Introduction
	Getting Text With gettext
	Going To Pot
	Going To Pootle
	Pay No Attention To That Man Behind The Curtain
	C'est Magnifique!

	Distribute Your Activity
	Choose A License
	Add License Comments To Your Python Code
	Create An .xo File
	Add Your Activity To ASLO

	Debugging Sugar Activities
	Introduction
	Make A Standalone Version Of Your Program First
	Use PyLint, PyChecker, or PyFlakes
	PyFlakes
	PyChecker
	PyLint

	The Log Activity
	Logging
	The Analyze Activity

	Making Shared Activities
	Introduction
	Running Sugar As More Than One User
	Fedora 10 (Sugar .82)
	Fedora 11 (Sugar .84)
	sugar-jhbuild

	Connecting To Other Users
	Salut
	Jabber Server

	The MiniChat Activity
	Know who Your Buddies Are
	It's A Series Of Tubes!
	Read Etexts III, Now with Book Sharing!
	Using D-Bus Tubes
	How D-Bus Tubes Work, More Or Less
	Introducing Hello Mesh And Friends

	Adding Text To Speech
	Introduction
	
	We Have Ways To Make You Talk
	 Running espeak Directly
	Using The gstreamer espeak Plugin

	Fun With The Journal
	Introduction
	Introducing Sugar Commander
	 Adding A Journal Entry
	
	NOT Adding A Journal Entry
	Listing Out Journal Entries
	 Using Journal Entries
	Updating A Journal Object
	Deleting A Journal Entry
	Getting Callbacks From The Journal Using D-Bus

	Making Activities Using PyGame
	Introduction
	Making A Standalone Game Using PyGame
	Introducing SugarGame
	Making A Sugar Activity Out Of A PyGame Program

	Making New Style Toolbars
	Introduction
	 Adding New Style Toolbars to Read Etexts II

	Where To Go From Here?
	PyGTK Book by Peter Gill
	OLPC Austria Activity Handbook
	The Sugar Almanac
	 Sugar Labs Mailing Lists
	PyDoc

	About The Authors
	James Simmons
	James Cameron
	Oceana Rain Fields

	License
	Acknowledgements
	Authors
	General Public License

