
255

#11: Make a Music Box and Program a Tune
Walter Bender & Devin Ulibarri

All musicians are subconsciously mathematicians.
—Thelonious Monk, jazz pianist and composer

Why Music? 
Enumerated by Seymour Papert and Cynthia Solomon as “thing to do” #11, music is used as an 
entry point for engaging in computational thinking. Computation and music share important 
concepts. And music, like computation, requires a person to think on an abstract level. Moreover, 
music has some benefits that the traditional computing pedagogy does not, including the 
potential to improve social-emotional skills. See Table 1 for some examples of shared concepts 
between music and programming.

Music composition and performance require practitioners to follow basic control flow such as: 
sequences; conditionals and loops; data abstractions such as changes in timbre, tone, and meter; 
functions and operators such as transpositions, inversions, and retrograde; and debugging—
making corrections to a composition, perfecting a transcription, or working through a section 
of music on an instrument—that leads to a deeper understanding of music theory. 

The social aspect of musical performance also parallels the perspective that computing is 
both collaborative and creative (Brennan & Resnick, 2012). An analog can be built between the 
way programmers work together, building communities around sharing and remixing code, and 
the way in which musicians build communities of interest through performance, sharing, and 
debating best practices. Programmers review code and musicians critique performances. Both 
musicians and programmers modify, improvise, and derive inspiration from the work of peers 
and mentors.1

According to the National Endowment for the Arts: “Childhood arts education provides 
important gateway and formative experiences in the arts… School-based arts education is 
of particular importance because schools are the only institutions that reach vast numbers 
of children, particularly low-income children, who are unlikely to receive arts education any 
other way… [A] body of solid research and innovative practice continues to grow and show 
that arts education has serious benefits to students as students, and that arts learning is strongly 
associated with higher levels of achievement, positive social and emotional development, and 
successful transitions into adulthood” (Bawa et al., 2010).

In another study, “an analysis of longitudinal data on 25,000 students showed that those with 
higher levels of involvement with the arts did better across a wide range of outcome variables 
than those with lower arts involvement, and that low-income students benefited from their 
involvement in the arts more significantly than did higher-income students” (Catterall et al., 
1999). 

Students demonstrably benefit from an engaging music education. Demand today is in 
science, technology, engineering, and mathematics (STEM) and EdTech. Why not give people 
and institutions the option to learn both STEM and music?



Twenty Things to Do with a Computer + 50

256

Programming concept Musical counterpart

Sequences A series of notes (or phrases), in order

Loops Repeating phrases, drum loops

Conditionals Using conditionals for 1st and 2nd endings

Data structures Note structure (note length, pitch name, and pitch octave) 
and phrase structure

Modularity and abstraction Actions, transpositions, intervals, ornamentation, inver-
sions, etc.

Debugging Using one’s ear, e.g., does the result sound correct? Under-
standing of music theory, e.g., where is the meaningful 
musical structure?

Table 1: Shared concepts: programming and music

Computation, Not Coding
As recently as 2006, during the launch of One Laptop per Child (Bender et al., 2012), there was 
pushback from educators and pundits regarding children using computers. But fifteen years 
and one global pandemic later, few argue against children having access to computing. The 
role of computation in learning, however, remains open to debate. In an article in the New 
York Times (Singer, 2017), Tim Cook, CEO of Apple, Inc., representing the point of view of 
Silicon Valley, said “Coding should be a requirement in every public school.” But to what end? 
To ensure a “skilled workforce”? Beyond the false promise that by learning Java you will get a 
job at Google, we take the position that learning to code is not the same as becoming literate in 
computational thinking. Computational thinking, rather, is “solving problems using techniques 
from computing” (Sharples et al., 2015) and it has ramifications far beyond job training; it is 
about expression of ideas, problem solving, and creativity, all important life skills. 

Acknowledging that computational thinking is about more than learning to program leads to 
a number of questions: How should we go about leveraging the latent capacity to learn? How can 
we transform a consumer-oriented culture into a learning-oriented culture? And is it possible 
to design a learning platform that respects the diversity of educational context found across a 
diversity of learning populations?

Music Is “Hard Fun” 
In a 2008 memo “Questioning General Education,” Marvin Minsky proposed that we “re-aim 
our schools towards encouraging children to pursue more focused hobbies and specialties—to 
provide them with more time for (and earlier experience with) developing more powerful sets of 
mental skills, which they later can extend to more academic activities.” Minsky goes on to argue 
that the organization of our cognitive resources into towers with different levels of processes 
is what “enables our minds to generate so many new kinds of things and ideas.” These levels 
span agencies, each of which specializes in areas such as gaining knowledge from experience, 
planning and causal attribution, the construction of models, and identifying values and ideals. 
A focus on achieving meaningful goals, not just the accumulation of simple knowledge objects, 
exercises all of the levels in a cognitive tower, helping a child “develop proficiencies that can be 
used in other domains” (Minsky, 2019). 



#11: Make a Music Box and Program a Tune

257

A focus on achieving meaningful goals, not just the accumulation of trivial knowledge, helps 
a child “develop proficiencies that can be used in other domains.” A focus on hobbies, where 
interest is authentic and sustained, as opposed to curricula organized around the sequential 
achievement of fragmented goals, has the potential for deep engagement across multiple levels. 
Albert Einstein summed up the focus on hobbies succinctly when he said, “Love is a better 
master than duty.” It was in this spirit that Minsky’s Music Box spawned the music ideas in the 
Twenty Things memo (Solomon et al., 2020).2 Music was and is a vehicle for deep engagement.

Note the emphasis on “deep” engagement. There is a strong temptation to make things as 
simple as possible so as to reach the broadest possible audience. However some things (e.g., 
music and computation) are inherently complex. The hard part of “hard fun” of learning is 
in reaching towards complexity. Using an app is easy. Writing an app is harder. Listening to 
music is easy.3 Performing and composing music is harder. Children should not miss out on the 
learning that takes place when engaging with complexity.

Musical Microworlds
Papert used the term microworld to describe the world of geometry explored when children used 
Logo. A microworld is a “subset of reality or a constructed reality whose structure matches that 
of a given cognitive mechanism so as to provide an environment where the latter can operate 
effectively. The concept leads to the project of inventing microworlds so structured as to allow a 
human learner to exercise particular powerful ideas or intellectual skills.” (Papert, 1980) 

In a microworld, an individual is able to use a technological tool for thinking and cognitive 
exploration that would not be possible without the technology. But not just any technology. 
“The use of the microworld provides a model of a learning theory in which active learning 
consists of exploration by the learner of a microworld sufficiently bounded and transparent for 
constructive exploration and yet sufficiently rich for significant discovery” (Papert, 1980).

In a microworld of music, a student might start by exploring pitch and rhythm while using 
affordances for repetition, transposition, etc. The tools are more than an interface to a synthesizer 
and more than a transcription/engraving tool (e.g., Finale, Sibelius, Musescore, etc.)—they are 
scalable and modular collections of essential building blocks that are at the crux of all powerful 
ideas in music. 

The microworld is designed to introduce a specific concept with parallels in both music and 
computer science. For example, a workshop on rhythm utilizes a rhythm making tool that intro-
duces the concept of loops, which are used for drum machines implemented by while loops. 

Music Blocks
“Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.” — Leibniz

Music Blocks4 (musicblocks.sugarlabs.org) is a visual programming language and collection of 
manipulative tools for exploring musical and mathematical concepts in an integrative and fun 
way. Music Blocks is a fork of Turtle Blocks,5 an activity with a Logo-inspired graphical turtle that 
draws colorful art based on snap-together visual programming elements. Its low floor provides 
an easy entry point for beginners. It also has high ceiling programming, graphics, mathematics, 
and computer science features that will challenge the more adventurous student.



Twenty Th ings to Do with a Computer + 50

258

   

Figures 1 and 2: Note-value representation as visual programming in Music Blocks. Note value is a quanta of 
time expressed as a ratio; ¼ is the same as a quarter note in music. Whatever is contained within the note 
value clamp will be done over the length of time of a quarter note. Th e example on the left  will perform G (in 
the 4th octave) for the length of a quarter note; the example on the right will perform a kick drum sound for 
the length of a quarter note.

Figure 3: In this example, two octaves are played during which a portion of a spiral is drawn with each note.  
Th e angular distance traversed is determined by the note’s value. Th e line color is determined by the note’s 
pitch. Th e resulting spiral serves as an example of an alternative notation system created by a student using 
Music Blocks.

Music is not an add-on to the Music Blocks language; the note is a core datatype in the language 
(See Figures 1‒3). Th e note expresses a quanta of time as a ratio, because the relative length of 
a note and their relationship to other notes is the fundamental basis of rhythm.6 From there, 
Music Blocks has various ways to express pitch: solfege (e.g., do, re, mi), musical alphabet (e.g., 
C, D, E), and Hertz (e.g., 440Hz for A in an equal temperament tuning system), which are 
pedagogically important expressions of pitch for making music.7

Music, like computer science, off ers a rich environment for exploration and problem solving, 
of which the intersection of their shared concepts allow for integrative learning. Music Blocks 

   



#11: Make a Music Box and Program a Tune

259

is designed to leverage the tools of the trade by using well-established scaffolding in music 
instruction and building analogous tools (or widgets) to help shape the introduction of powerful 
ideas, such as polyphonic rhythms, key and mode, intervals, tuning, and temperament. The 
software widgets are also tied to concepts in computer science. In other words, the widgets don’t 
just produce music, they output code that is descriptive of concepts found in music, such as 
generating rhythms, changing tempo, and using samples.

The configuration of each widget is programmable (using blocks) and every widget can be 
used to write and export code (as blocks). Along with the activities defined by the widgets, 
students also: identifying and differentiate patterns; explore proportions, ratios, and relation-
ships expressed through chords and intervals; read and represent musical ideas with a graph; 
use conditionals to express a melodic sequence; and program canons to explore concurrency.

The activities in which the students engage are constructive rather than instructive. Music 
Blocks provides scaffolding without over specifying the end results. Consequently, there are also 
numerous mechanisms to support debugging of both the music and the code.8 In the spirit of 
Papert and Solomon, some things to do with Music Blocks are listed in Table 2. 

1. Animate polyrhythms
2. Broadcast conductor 

instructions
3. Program a canon
4. Explore circles of fifths
5. Program a circular 

rhythm maker
6. Use conditionals in 

music
7. Explore representations
8. Musical cookie hunt
9. Design a crazy keyboard
10. Debug a composition
11. Design theme music for 

heroes and monsters for 
a video game

12. Use events for 
interactivity

13. Explore beat and rhythm
14. Explore chance
15. “Face the Music”
16. Use dictionaries to 

control ornamentation
17. Design a notation system
18. Explore intervals.
19. Make a piano
20. Build a better mousetrap
21. Make a music video 
22. Program Music Deducto
23. Make music paint
24. Use an oscilloscope
25. Hunt for hidden music
26. Explore quiet and loud
27. Incorporate sensors for 

interactivity

28. Program strange loops 
(recursion)

29. Build a record player
30. Explore musical 

symmetry
31. Explore synesthesia
32. Use the heap to explore 

variations on a theme
33. Build a xylophone
34. Make a musical valentine
35. Program Musical Racko
36. Program a version of Set, 

where the dimensions are 
musical

37. Build a metronome
38. Build a one-string guitar
39. Explore harmonics
40. Invent 40 more ideas

Table 2: Some things to do with Music Blocks 

Beyond Music Blocks
A musical microworld is not a destination. Rather, it is a waypoint along a road to achieving 
fluency in both musical comprehension and computational thinking. We want the students to 
dive deeper into musical representations and programming constructs than they could do in 
a single session. Therefore we provide mechanisms to go beyond tools such as Music Blocks 
to give the learner both the ability to communicate with the mainstream worlds of music and 
computer science and access to a rich set of tools that they may use to further augment their 
explorations. Our workshops, by design, do not confine a user to its tools—rather it is a tool to 
propel the ambitious learner to other rich and authentic discoveries (Bender et al., 2016).



Twenty Things to Do with a Computer + 50

260

\version “2.18.2”
mouse = {
\meter
\tempo 4 = 75
 \time 4/4
<e’ c’>2 <f’ a>4 <f’ a>4 <e’ c’>2 <d’ g>4 r4
<e’ c’>2 <g’ g>4 <g’ g>4 <g’ c’>2 <a’ f>4 g’4 
<e’ c’>2 <f’ a>4 <f’ a>4 <e’ c’>2 <d’ g>4 r4
<e’ c’>2 <g’ g>4 <g’ g>4 <g’ c’>2 <a’ f>4 g’4 
}
\score {
<<
\new Staff = “treble” {
\clef “treble”
\set Staff.instrumentName = #”mouse” \mouse
}
>>
\layout { }
}

Figure 4: Lilypond is a music engraving program. The Save as Lilypond option in Music Blocks exports a 
Music Blocks composition into sheet music, thus connecting traditional musical notation with the block 
language. (Shown is part of a composition by then seven-year-old T. Dildine.)

Made with LilyPond and Music Blocks (http://musicblocks.sugarlabs.org/)

Teddy Composition
Teddy Dildine

�
�� �
��

��
� �

�
�
�

� �
�
�
�

�
�

�
�

�
�

�
�

� �
��

�
�

� 44
�

44� �
mole

brownrat

�
�

�
�

�
�

�
�
�

� �
��

�

Music 

ǀBlocks 

ǀǀ  Typeset using LilyPond software  © 2021 by Teddy Dildine — Made with Music Blocks Software v.2.2 Engraved on 2021-05-01

 Creative Commons Attribution ShareAlike 3.0 (Unported) License — free to distribute, modify, and performǀ



#11: Make a Music Box and Program a Tune

261

Figure 5: Th ere are practical limits to the size and complexity of Music Blocks programs. At some point 
we expect Music Blocks programmers to move on to text-based programming languages. To facilitate this 
transition, there is a JavaScript widget that will convert a Music Blocks program into JavaScript. (Th is feature 
was added to Music Blocks by Anindya Kundu for Google Summer of Code.)

Mu sic Blocks and Assessment
It is unrealistic to propose an intervention in education without acknowledging the current 
emphasis on measurement and evaluation. With Music Blocks, the goal is to ensure that any 
interventions have some positive socio-economic impact on children, so an evaluation is used 
that looks more broadly than those data that are captured by standardized tests. Evaluation 
occurs at diff erent levels (Urrea & Bender, 2012): micro (at the level of individual students, 
teachers, and parents); mezzo (at the level of a classroom or school); and macro (national and 
global indicators). Th ese mechanisms, briefl y reviewed below, are orthogonal to the typical 
standardized-testing regimes; the two approaches—one serving administrators, the other 
serving learners—coexist. 

At the micro level, Music Blocks maintains a digital portfolio to support refl ection that can 
help students (as well as teachers and parents) become aware of their own learning, and do so by 
documenting their work and thinking over time. Digital portfolios are part of a “comprehensive 
system that combines formal, informal, and classroom assessment, including portfolios, to 
inform the state, the district, the school, and the teacher” (Stefanakis, 2002). Without a way to 
make visible what students do and what teachers teach, it is diffi  cult to make changes to improve 
those dynamics. Both music and coding produce artifacts that are readily captured in a digital 
portfolio—for example, musical compositions, code, and geometric art. As with a source-code 
management system, each commit is accompanied by a commit message, where the learner is 
asked to document their work.



Twenty Things to Do with a Computer + 50

262

At a mezzo level, Music Blocks has tools that help teachers understand the impact and 
evolution of the program in a larger context—at the level of the classroom or the school. The 
goal is to navigate and visualize data automatically derived from the learning activities in which 
the learners are engaged. These data help teachers, administrators, and other stakeholders 
understand the impact of a program and make adjustments to it. Music Blocks has a built-in 
set of rubrics (Bender & Urrea, 2015) that can be used to visualize and track student progress. 

As a macro level, Music Blocks supports strategies for understanding the use of computation 
in learning at a much larger scale. These strategies involve the design and implementation of 
a repository of objects or artifacts designed by children from different programs. There are a 
number of similar repositories with artifacts from an individual already in existence, for example, 
the Scratch website and the Music Blocks Planet (server with student published projects, acces-
sible world-wide). Such collections make possible the analysis and understanding of impact at 
a large scale, and the learning that emerges, not only at the individual, but also at the collective 
level. In the respect that these sites allow users to remix, they bear a close resemblance to popular 
tools used in computer engineering, such as GitHub and GitLab. 

Music+Code Teaching Artists
Around the time that he invented the Music Box, Minsky served as the AI consultant on Stanley 
Kubrick’s movie adaptation of Arthur C. Clark’s 2001: A Space Odyssey. Both the HAL 9000 
computer and the notion that children would be programming music were considered science 
fiction in 1971. Fifty years later, Siri et al. can “open the pod-bay doors” and play a compet-
itive game of chess; any child with access to a web browser can program music with Music 
Blocks. But who will mentor these children? Who will guide them in their exploration of a 
musical microworld? Who will introduce them to the powerful ideas inherent in both music 
and computation?

STEM education is in high demand. Policy makers are mandating schools teach computer 
programming in their classrooms, which creates a demand for teachers trained in computation. 
Primary education, however, is not seen as a competitive or desirable career for many who have 
computer programming skills. So who will teach these skills? 

Music education, with its rich blend of theory and practice, has proven benefits to early 
education and yet, because of financial and time pressures, it is largely sidelined in public 
education. Is there a way we can capture the benefits of music education that has been pushed 
aside in order to advance STEM education? 

Musicians graduate from conservatories and colleges with few career prospects other than 
part time teaching jobs and freelance performance gigs. Professionals who specialize in music 
and who teach music both inside and outside of traditional settings are called “Teaching Artists” 
(Booth, 2009). Teaching Artists, even those working at the world’s most prestigious institutions, 
typically work multiple part-time jobs in order to scrape by financially (National Endowment 
for the Arts, 2011b). 

The many skilled Teaching Artists who are graduating at a steady rate from music schools 
can introduce young learners to programming and programming can be used as a vehicle to 
surface the powerful mathematical structure inherent in music. Teaching Artists can play a 
central role in primary STEM education, while simultaneously providing the proven cognitive 
and social-emotional benefits of a quality music education (Gaser & Schlaug, 2003; Hutchinson 
et al., 2003; Lee et al., 2003; Schlaug, 2001; Skoe & Kraus, 2012). Engaging and employing 
Teaching Artists into the booming economy of EdTech provides rich exposure to computational 
thinking, while not compromising music’s proven benefits to a child’s cognitive development 
and overall well-being.



#11: Make a Music Box and Program a Tune

263

While music is not typically associated with computer science, there is a depth of literature 
(Brindle, 1987; Garland & Kahn, 1995; Nierhaus, 2009) drawing parallels between music and 
mathematics. By focusing on the parallels between music and computation, and the knowledge 
and insights gained through designing and critiquing their musical and programmatic 
constructs, Teaching Artists offer novel perspectives of both music and computer science to 
learners, educators, and the public. 

Music is a universal language. Leveraging music and music teachers has the potential to 
reach a global audience. Under-employed musicians, who are statistically proven to be highly 
educated and demographically diverse (National Endowment for the Arts, 2011a), are a global 
phenomenon, one that we leverage both in terms of mining latent skills and also filling a need 
for more diverse and engaging mentorship in computational thinking. Teaching Artists using 
Music Blocks will foster basic computer science skills and broaden public engagement in 
computer science in a large, diverse population that has been underserved by existing efforts for 
broadening participation in computer science and engage and enable a talented but underem-
ployed group—music teachers—in fulfilling both pedagogical and societal needs.9 

References
Bawa, S., Williams, K., & Dong, W. (2010). Audience 2.0: How Technology Influences Arts Participation. 

National Endowment for the Arts.  
Bender, W., Kane, C., Cornish, J., & Donahue, N. (2012). Learning to Change the World: The Social Impact 

of One Laptop Per Child. St. Martin’s Publishing Group.  
Bender, W., Ulibarri, D., & Khandelwal, Y. (2016). Music Blocks: A Musical Microworld. Constructionism 

2016, Constructionism in Action.  
Bender, W., & Urrea, C. (2015). Visualizing Learning in Open-Ended Problem Solving in the Arts. 

RED-Revista de Educación a Distancia, 46(2). doi.org/10.6018/red/46/2  
Booth, E. (2009). The Music Teaching Artist’s Bible. Oxford Univ. Press.  
Brennan, K., & Resnick, M. (2012). New Frameworks for Studying and Assessing the Development of 

Computational Thinking. Proceedings of the 2012 annual meeting of the American Educational Re-
search Association (AERA), 1, 25.  

Brindle, R. S. (1987). The New Music: The Avant-garde Since 1945. Oxford Univ. Press.  
Catterall, J., Chapleau, R., & et al. (1999). Involvement in the Arts and Human Development: General 

Involvement and Intensive Involvement in Music and Theatre Arts. In E. Fiske (Ed.), Champions of 
Change: The Impact of the Arts on Learning (pp. 1-18.11). Washington DC: Arts Education Partner-
ship and President’s Committee on the Arts and Humanities.  

Garland, T. H., & Kahn, C. V. (1995). Math and Music: Harmonious Connections. Seymour (Dale) Publi-
cations.

Gaser, C., & Schlaug, G. (2003). Brain Structures Differ between Musicians and Non-Musicians. Journal 
of Neuroscience, 23(27 ), 9240-9245. doi.org/10.1523/JNEUROSCI.23-27-09240.2003  

Hutchinson, S., Lee, L. H., Gaab, N., & Schlaug, G. (2003). Cerebellar Volume of Musicians Cerebral 
Cortex, 13(9), 943-949. doi.org/10.1093/cercor/13.9.943  

Lee, D., Chen, Y., & Schlaug, G. (2003). Corpus Callosum: Musician and Gender Effects. Neuroreport, 
14(2), 205-209. doi.org/10.1097/00001756-200302100-00009  

Minsky, M. (2019). Questioning General Education. In C. Solomon & X. Xiao (Eds.), Inventive Minds: 
Marvin Minsky on Education. The MIT Press.  

National Endowment for the Arts. (2011a). Artists and Arts Workers in the United States. NEA Research 
Note #105.

National Endowment for the Arts. (2011b). Findings from the American Community Survey (2005-
2009) and the Quarterly Census of Employment and Wages (2010). NEA Research Note #105.  

Nierhaus, G. (2009). Algorithmic Composition: Paradigms of Automated Music Generation. Springer.  
Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.  



Twenty Things to Do with a Computer + 50

264

Schlaug, G. (2001). The Brain of Musicians: A Model for Functional and Structural Adaptation. Annals of 
the New York Academy of Sciences, 930, 281-299. doi.org/10.1111/j.1749-6632.2001.tb05739.x  

Sharples, M., Adams, A., Alozie, N., & Ferguson, R. (2015). Innovating Pedagogy 2015 (Report No: 4).
Singer, N. (2017, June 17). How Silicon Valley Pushed Coding Into American Classrooms. New York 

Times
Skoe, E., & Kraus, N. (2012). A Little Goes a Long Way: How the Adult Brain Is Shaped by Musical 

Training in Childhood. The Journal of Neuroscience, 32(34), 11507-11510. doi.org/10.1523/JNEURO-
SCI.1949-12.2012

Solomon, C., Harvey, B., Kahn, K., Lieberman, H., Miller, M., Minsky, M., Papert, A., Silverman, B., & 
Shepard, T. (2020). History of Logo. Proceedings of the ACM on Programming Languages, 4(HOPL). 
doi.org/10.1145/3386329

Stefanakis, E. H. (2002). Multiple Intelligences and Portfolios: A Window into the Learner’s Mind. Heine-
mann.

Urrea, C., & Bender, W. (2012). Making Learning Visible. Mind, Brain, and Education, 6(4), 227-241.

Notes
1 With both Music and Free/Libre Software, there is complete transparency—nothing is hidden from the 

student, giving them the opportunity to both debug and remix.
2 It is worth noting that Wally Feurzeig—one of the co-inventors of Logo—was both a mathematician 

and a pianist (Solomon et al. 2020).
3 Our intention is not to demean the demands of serious listening, but popular culture so often invites 

people to be passive consumers of music.
4 Music Blocks is available under the GNU Affero General Public License (AGPL) v3.0, a free, copyleft 

license.
5 Turtle Blocks is a fork of Brian Silverman’s Turtle Art.
6 Other languages such as MAX, Scratch, or SuperCollider require the user to specify quantas of time 

from seconds and create their own functions in order to express time in this manner—perhaps this is 
why musicians do not universally find those languages useful for teaching concepts from music.

7 Music Blocks also allows the student to explore concepts such as mode, key, timbre, and temperament 
(See github.com/sugarlabs/musicblocks/blob/master/guide/README.md).

8 See github.com/sugarlabs/musicblocks/blob/master/Debugging.md
9 Some Music Blocks lesson plans are available at mapflc.com/lesson-plans/


